Applications Manual

Data Acquisition Processor
Analog Accelerator Series

Version 5.30

Microstar Laboratories, Inc.

This manual contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1985-2000

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004

Tel: (425) 453-2345
Fax: (425) 453-3199
http:// www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, and
DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of
Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number MSDM530-9810 1

Contents

(0] 01 (<] 0| £SO
1. Introductionccccceeueee.
Hardware Organization ...
SOftWare OrganizZationcouciiieiirieieiei sttt sttt seeresre b

Output
Software Triggers
Further Real-Time PrOCESSING.........coueeriririesierieie ettt et 12
Digital Signal Processing
PrOCESS CONIOL.....c.oviiiiciieeeee s
COMMUNICATIONS ...ttt

S INPUL e e et r e R n bbb ne s
Application 1 — Sampling Three INPULScccvviriiieiceies s 17
Application 2 — Sampling 5000 Values
Application 3 — Digital INPUL........ooieiiiiicece e

4. BasiC Real-Time PrOCESSINGcciiiieiiiiieieisiesie e
APPLICALION 4 — AVEIAGING .o.vinviieiieiieieitc ettt et b se e ne e
Application 5 — Peak DEtECLION..........ccuiiiiriiiieieeee e e
Application 6 — Real-Time Data Analysis
Application 7 — DAPL EXPrESSIONSccuiiuirieiieieiieieii sttt
Application 8 — Extracting a Bit from a Digital INput..........ccccocoiiniiiininiiineee 32
Application 9 — Finding HiStOGramscoeieiiiiiniie e

5. OULPUL. ... b et bbbt e et b e e e bt e e bt e bt s b e e e b r e e re s
Application 10 — Asynchronous Output
Application 11 — Synchronous OQULPUL.........cveviiiieiiieiese e
Application 12 — Generating Waveforms...........cooeveiiiiieiiieseseresse e
Application 13 — Generating Arbitrary Periodic Waveforms
Application 14 — Generating Periodic Waveforms by Copyingccccovvvvrvenncninnen. 43
Application 15 — Generating Periodic Waveforms by Interpolationc.cccceveinee. 45
Application 16 — Generating One-Shot Pulses
Application 17 — Using Analog Output EXpansion..........ccocceriernenienneineeseeneiens

6. SOFtWAIE THIGUEIING .ovvevveiiieieieeie ettt be st st e e e eseeresaestesnenneas
Application 18 — SOFIWAre THGGEIS ..cueeververierieieiieeee sttt sbe s
Application 19 — Peak DEteCiON..........ccviiiiriirieieieieese e
Application 20 — Implementing a Digital Oscilloscope
Application 21 — USIiNG HYSEIESIS.......ccuiiiiiiieieiiescse e
Application 22 — Triggering on TWO CONAItiONSccoererererieneieieesese e
Application 23 — Retriggering
Application 24 — Spike DetECLIONcciiiiiiieieee e

Contents iii

Application 25 — Time Stamping PUISES..........c.coiiiiiiiiieeeee e
Application 26 — Detecting Bit Transitions

Application 27 — Using Triggers to Calculate FreqUenCycocooerereneneicicencnienne 73
7. Further Real-Time ProCESSING.......ccuiiiirieieieiriesie sttt 75

Application 28 — Finding Deviations between INPULS............cccveeneineincinscees 75

Application 29 — Thermocouple Linearizationccocevveverieiieiisiesinnenese e 77

Improving Thermocouple Accuracy

Converting Temperatures to Fahrenheitc.covoveiiiiiiineceee e 80

Sampling Several THerMOCOUPIEScviiiiirieieieieesii ettt anens 81

Sampling Many Thermocouples
Sensing Reference Temperature
Application 30 — Interpolation
Application 31 — Autoranging
Application 32 — Identifying Maxima and Minima.............ccocorevireiiinniiniesese e 92
Application 33 — Almost Simultaneous Samplingccccovveveieiiiciiiiinee e 94
Application 34 — Mixing Fast Inputs and Slow Inputs.....
Application 35 — Multiple Rate Data Transfer

Application 36 — Observing Timing of Rotating Machineryccccoevcvneienieriennns 100
8. Digital SigNal ProCESSING.......ccveiieieiieeitiiisierieieeee sttt be st st s eseeresbessesrens
Application 37 — Digital Filtering..........cooiiiiiiiee s
Application 38 — Spectral Analysis
Application 39 — Calculating Transfer FUNCLIONSccoeieiiiiiiiencieee e 109
9. ProCeSS CONTIOL.......c.oiiiiiiieiieie e
APPLCAtION 40 — ALGIMSviviiieiieiieii ettt e sbe sttt ee s ereaneas
Application 41 — PID CONIOL.......cccciiiiiiiiieieceise st
Application 42 — Pulse Width Modulation
HEALEr CONIOIIET ...t
10. COMMIUNICALIONS ...tttk b ettt
Application 43 — Text Communication..............
Application 44 — Text Communication from Several Tasksccocerererereneienenne. 123
Application 45 — Simultaneous Transfer of Text Data and Binary Data...................... 125
Application 46 — Sending Data to a Data AcquiSition Processor..........cccccveveeieenncnne. 128
Application 47 — Synchronizing Several Data Acquisition Processors..........c.cc.ceeue.... 130
Application 48 — Serial COMMUNICALION............ccviiiiiiieie e 134
INAEX s 137

iv Contents

1. Introduction

The Data Acquisition Processor from Microstar Laboratories is a complete data
acquisition system that occupies one expansion slot in a personal computer. This
Applications Manual introduces the Data Acquisition Processor by showing how to
set up a wide variety of applications.

Two manuals complement the Applications Manual:
» The DAPL Manual describes the DAPL operating system, which runs in the Data
Acquisition Processor.
« A Data Acquisition Processor hardware manual describes installation and use of
Data Acquisition Processor hardware.

This version of the Applications Manual supports all versions of the DAPL operating
system. Two applications require DAPL-specific commands: Application 37 and
Application 40 each use a command supported only by DAPL 2000. See those
applications for more information.

Note: The DAP 3400a is a unique board that requires a different sytax for some
DAPL commands. Examples applications are provided in the DAP 3400a hardware
documentation.

Chapter 2 outlines applications ranging from simple input and output to complex
digital signal processing and real-time process control. These applications are
described in detail in chapters 3 through 10.

To set up an application, the Data Acquisition Processor requires a series of
commands. Typical commands set Data Acquisition Processor options, define
variables, and define, start, and stop procedures.

Commands can be entered interactively from the keyboard using DAPview for
Windows, or can be sent to the Data Acquisition Processor from a program running in
the host PC. DAPview for Windows is an application development program from
Microstar Laboratories; this program is described in the DAPview for Windows
Manual.

A text file of Data Acquisition Processor commands is called a command file. A
command file can be created using the integrated editor of DAPview Plus or using any
text editor in the host PC. Definitions and formal syntax for DAPL commands are

Introduction 1

found in the DAPL Manual. With DAPview Plus, the syntax of DAPL commands also
is available online.

The sample command files in this manual can be entered using DAPview. The
command files also are provided on the Data Acquisition Processor diskettes. To enter
the commands, install the Data Acquisition Processor and the DAPview software
following the instructions in the Data Acquisition Processor hardware manual.

The Data Acquisition Processor has a help facility and extensive error messages.
DAPview and DAPview Plus both have help facilities.

Hardware Organization

Figure 1 shows the hardware organization of the Data Acquisition Processor. The
Data Acquisition Processor is a complete microcomputer with the following features:
It has its own microprocessor, random access memory (RAM) and read only memory
(ROM), analog and digital inputs, analog and digital outputs, input/output control and
timing circuits, timers, and direct memory access controllers (DMA) or first-in-first-
out buffers (FIFO) for high-speed data transfer. Some Data Acquisition Processor
models also have a digital signal processor with static RAM and some models also
have a serial interface. The Data Acquisition Processor is connected to the PC through
special FIFO interface hardware.

The timing control circuits control the analog and digital inputs and outputs so that the
microprocessor is free to process the digital results. The timing control circuits select
input pins and input pin gains. High-speed hardware implemented with a DMA
controller or FIFO buffer transfers the digitized analog-to-digital converter output to
the on-board memory. The timing control circuits also select analog and digital
outputs. High-speed hardware, implemented with a DMA controller or FIFO buffer,
transfers digital values from memory to the digital-to-analog converter or the digital
output.

The Data Acquisition Processor provides analog and digital expansion signals for
external multiplexing of analog and digital inputs. Using external multiplexers, the
Data Acquisition Processor accepts up to 512 analog inputs and up to 128 digital
inputs. The DAP 800 does not support external analog or digital expansion.

2 Introduction

Analog Digital Analog Digital
Inputs Inputs Outputs Outputs
J ;] A\
Multi-
) plexer
Prog.
7 Gain
\I/ N\
Digital Digital
Timing AID Input D/A Output
and FAN AN
Expansion
Control
2\
N\ N\
Fast Transfer Fast Transfer
Hardware Hardware
N\ ll TT
< Local Bus
AN II
N\
RAM pC NN
CPU FIFO DSP K) SRAM
ROM Interface
PC Bus

Figure 1. Hardware Organization

The analog voltage on one single-ended input pin or a differential pin pair is
channeled from the analog input pins through a multiplexer and an instrumentation
amplifier to a programmable gain amplifier. The gain is selected independently for
each pin. A sample-and-hold circuit holds the voltage stable for the analog-to-digital
converter, and the analog-to-digital converter converts the voltage to a binary number.

The Data Acquisition Processor provides two analog outputs through two digital-to-

analog converters. Digital outputs are provided on a digital output port.

Introduction

Software Organization

A procedure is a group of commands that together perform some function. DAPL
allows the user to define input procedures, processing procedures, and output
procedures for a Data Acquisition Processor. Within the processing procedure
definitions are task definition commands. All the tasks in a procedure execute
concurrently when the procedure is active. A command can be used several times to
define distinct tasks within a procedure definition. A processing procedure, for
example, might contain several commands setting up AVERAGE tasks that the Data
Acquisition Processor executes concurrently on different input channel pipes.

An input procedure sets the sampling rate and selects the physical input pins on which
voltages are sampled. An input procedure also may specify a sample count. Most
applications have one input procedure, one processing procedure, and possibly one
output procedure.

Every task is defined in a processing procedure. A task definition consists of a
command and its parameters. Defining a task does not activate the task; a task only
becomes active after the Data Acquisition Processor receives a START command to
start the procedure containing the task.

Pipes are first-in-first-out software buffers which are used by DAPL to transfer data
between DAPL tasks. Triggers are special pipes used to transfer synchronization
information between DAPL tasks.

It is easy to create a DAPL application—simply:
« name all constants, variables, pipes and triggers
« define one or more procedures, and
« start one or more procedures.

Figure 2 shows the software organization of a typical application.

4 Introduction

Input
Procedure

Processing
Procedure

Introduction

Figure 2. Software Organization

Analog input pins

Input channel pipes

Tasks

Trigger

Pipe

Task

Pipe

Tasks

Pipes

Task

Host

2. Applications Overview

This chapter lists a number of typical Data Acquisition Processor applications; the
applications are described in detail in the following chapters of this manual. Each
application introduces a DAPL command or a data acquisition configuration. Consult
the DAPL Manual for detailed descriptions of the DAPL commands. The commands
for each application are provided in DAPL command files in the APPS subdirectory of
the Data Acquisition Processor software. Each of these DAPL command files can be
run from DAPview.

A brief outline of the applications follows.
Input

Application 1 — Sampling Three Inputs

This application outlines a simple DAPL input configuration. Three input pins are
digitized and the results are sent directly to the host PC.

Application 2 — Sampling 5000 Values

The COUNT input command limits the number of samples acquired by an input
procedure. This ability is especially useful in conjunction with external hardware
triggering, as illustrated in this application.

Application 3 — Digital Input

This application shows how to sample analog and digital inputs concurrently and send
data to the host. Binary inputs are acquired on the digital input port.

Applications Overview 7

Basic Real-Time Processing

Application 4 — Averaging

This application shows how to average data. Averaging reduces the rate at which the
Data Acquisition Processor returns data to the host computer. Averaging may be used
to slow the Data Acquisition Processor below its slowest data acquisition rate, or to
improve accuracy by reducing the effects of noise.

Application 5 — Peak Detection

Some applications only require information about the maximum or minimum values of
input data. This application demonstrates the use of the HIGH and RANGE commands
to extract peak values.

Application 6 — Real-Time Data Analysis

This application demonstrates how commands can be chained to perform
sophisticated data processing. In this example, derivatives, integrals, and square roots
are computed.

Application 7— DAPL Expressions

DAPL expressions define general arithmetic and logical operations on data. In this
example, a DAPL expression converts raw data into engineering units.

Application 8 — Extracting a Bit from a Digital Input

In this example, an EXTRACT command extracts one bit from digital input port data.

Application 9 — Finding Histograms

This application demonstrates how to generate a histogram which summarizes how
samples fall into user-defined ranges.

8 Applications Overview

Output

Application 10 — Asynchronous Output

The Data Acquisition Processor provides two analog output pins and one digital
output port. This application demonstrates how to control the analog and digital
outputs.

Application 11 — Synchronous Output

DAPL provides commands which update the analog and digital outputs at precise time
intervals. This application illustrates how to use an analog output to drive an external
strip chart recorder.

Application 12 — Generating Waveforms

This application explains how the WAVEFORM command can be used to generate
repetitive waveforms at the analog output pins.

Application 13 — Generating Arbitrary Periodic Waveforms

This example shows how to create arbitrary waveforms using output procedures.

Application 14 — Generating Periodic Waveforms by Copying

This example shows how to create an arbitrary waveform by copying a pipe to itself.

Application 15 — Generating Periodic Waveforms by Interpolation

This example shows how to create an arbitrary waveform by interpolation.

Application 16 — Generating One-Shot Pulses

This example shows how to generate one-shot pulses.

Application 17 — Using Analog Output Expansion

The Analog Output Expansion Board lets a Data Acquisition Processor drive more
than two analog outputs. This example shows the DAPL commands required to use
the Analog Output Expansion Board.

Applications Overview 9

Software Triggers

Application 18 — Software Triggers

This application scans input data for a level trigger and prints data preceding and
following each trigger event.

Application 19 — Peak Detection Using the PEAK command

The PEAK command asserts a trigger when it detects a local minimum or maximum in
its input data. This application illustrates the use of PEAK .

Application 20 — Implementing a Digital Oscilloscope

This application uses a DAPL trigger to implement a four channel digital oscilloscope
with pretriggering capability.

Application 21 — Using Hysteresis

This application demonstrates the use of trigger hysteresis to inhibit repeated
triggering from a single analog event.

Application 22 — Triggering on Two Conditions

Logical combinations of triggers are required in many applications. In an automotive
application, for example, two accelerometers oriented in the horizontal plane might be
connected to one Data Acquisition Processor. Software triggering would be used to
gather data whenever a large acceleration is observed along either axis. A TOR task is
used in this application to implement a logical OR operation on triggers.

Application 23 — Retriggering

A WAIT task cannot respond to triggers which are separated by fewer samples than the
number of samples transferred for each trigger event. This application uses a
RETRIGGER task to guarantee that triggers which occur close together are not ignored.

Application 24 — Spike Detection
Triggers can be used to record high-speed spikes in input data without overloading the

host PC. This application explains the use of wave extraction and wave averaging to
perform data reduction and obtain characteristics of typical spikes.

10 Applications Overview

Application 25 — Time Stamping Pulses

This application computes the sample number of each trigger event as well as the
maximum value of the data around each trigger.

Application 26 — Detecting Bit Transitions

DAPL can assert a trigger when binary inputs change. This application explains how
to select and trigger on various types of binary transitions.

Application 27 — Using Triggers to Calculate Frequency

Some applications only require summaries of the rates at which trigger assertions
occur. This application demonstrates the use of the FREQUENCY command to convert
trigger assertions into frequencies.

Applications Overview 11

Further Real-Time Processing

Application 28 — Finding Deviations between Inputs

This application compares two inputs. Whenever the input channel pipes differ by
more than a specified value, the sample number at which the difference occurs is
printed.

Application 29 — Thermocouple Linearization

Thermocouples are sensors which generate voltages which vary with temperature. The
conversion of raw thermocouple voltages to temperature readings requires sensor
linearization. This application illustrates how thermocouple linearization is performed
using the THERMO command.

Application 30 — Interpolation

Many sensors other than thermocouples require linearization. In this application an
INTERP task implements an arbitrary mathematical function.

Application 31 — Autoranging

The software selectable gain capability of the Data Acquisition Processor can be used
to implement input autoranging. This allows the Data Acquisition Processor to sample
input signals possessing dynamic ranges much larger than the resolution of the analog-
to-digital converter.

Application 32 — Identifying Maxima and Minima

In some applications, different tasks generate output data at different rates. These
situations require multiple FORMAT commands. This application demonstrates how
FORMAT prefixes can be used to identify the output data generated by DAPL.

Application 33 — Almost Simultaneous Sampling

This application explains how DAPL software can be used to provide "almost"
simultaneous sampling of two or more analog input pins. A hardware solution using
the Microstar Laboratories Simultaneous Sampling Board also is available.

12 Applications Overview

Application 34 — Mixing Fast Inputs and Slow Inputs

Input procedures provide a "channel pipe list" facility which allows tasks to read data
from more than one input channel pipe. This application explains why input channel
pipe lists are useful when sampling a combination of fast and slow inputs.

Application 35 — Multiple Rate Data Transfer

In some applications it is necessary to transfer several data streams to the host PC at
different data rates. This application shows how to use a MERGEF task to append
identifiers while merging several data streams.

Application 36 — Observing Timing of Rotating Machinery

With a Counter/Timer Board, a Data Acquisition Processor can resolve variations in
the speed of a rotating machine within one rotation. This application shows how to set
up the Data Acquisition Processor and the Counter/Timer Board to study rotating
machinery.

Applications Overview 13

Digital Signal Processing

All Data Acquisition Processor models perform digital signal processing. Because
Data Acquisition Processors with on-board digital signal processor (DSP) chips have
optimized hardware for digital signal processing, they have significantly better
performance than Data Acquisition Processors without DSP chips for the next three
applications.

Application 37 — Digital Filtering

This application uses the FIRFILTER command to implement a bandpass filter.

Application 38 — Spectral Analysis

A spectrum analyzer is a device which determines the frequency components of an
input signal. In this application, the FFT command is used in creating a DAPL
spectrum analyzer.

Application 39 — Calculating Transfer Functions

The transfer function describes the frequency domain response of a device. This
application shows two ways in which the Data Acquisition Processor can be used to
calculate transfer functions.

14 Applications Overview

Process Control

Application 40 — Alarms

In some applications it is necessary to monitor an analog voltage and switch a digital
control if an out-of-range value is detected. This application shows how to use an
ALARM task to respond quickly to an alarm condition.

Application 41 — PID Control

The Data Acquisition Processor can be configured as a process controller which
requires no intervention from the host PC. This application implements a PID
controller which reads an input voltage and controls an output signal so as to maintain
the input at a specified value.

Application 42 — Pulse Width Modulation

Some applications require on/off, rather than continuous, control. This application
uses pulse width modulation to feed the output of a P1D controller to an on/off device.

Applications Overview 15

Communications

Application 43 — Text Communication

For application in which text data needs to be sent to the PC, the Data Acquisition
Processor can send text instead of binary data. This application shows how to use
PRINT and FORMAT to send text to the PC.

Application 44 — Text Communication from Several Tasks

In many applications, the Data Acquisition Processor must return processed data from
multiple tasks. This application shows two ways to send text data to the PC.

Application 45 — Simultaneous Transfer of Text Data and Binary Data

In some applications the Data Acquisition Processor must send two data streams, one
at high speed with a large volume of data and one at low speed with a much smaller
volume of data. This application combines binary communication for high volume
data and text communication for low volume data.

Application 46 — Sending Data to a Data Acquisition Processor

Data can be transferred from the PC to a Data Acquisition Processor. This application
illustrates how a Data Acquisition Processor reads binary data from a PC.

Application 47 — Synchronizing Several Data Acquistion Processors

Some applications require more real-time processing power than one Data Acquisition
Processor can provide. Up to seven Data Acquisition Processors can be placed in one
PC. This application shows how to use two synchronized Data Acquisition Processors.

Application 48 — Serial Communication

The DAP 801 has a serial port; this Data Acquisition Processor can communicate with
external peripherals using serial communications. This application acquires analog
data, sends the raw data to the PC, and simultaneously logs summary data to a serial
printer.

16 Applications Overview

3. Input

Application 1 — Sampling Three Inputs

This application configures the Data Acquisition Processor to sample three input
signals and print the digitized values of these signals. The first signal is connected to
single-ended input 2, the second signal is connected to single-ended input 5, and the
final signal is connected to differential input 0. Each input pin is sampled every thirty
milliseconds. The following DAPL commands configure the Data Acquisition
Processor to perform this application.

The DAPL command file for this application is in the APPS subdirectory of the
installed Data Acquisition Processor software. The file is named “APP01.DAP.”

RESET

IDEFINE A 3
SET IPIPEO S2
SET IPIPE1 S5
SET IPIPE2 DO
TIME 10000
END

PDEFINE B
BPRINT
END

Indentation is optional since DAPL ignores extra spaces. IPIPE can be abbreviated to
IP.

The RESET command on the first line clears all definitions and errors. It is a good
idea to start each application with a RESET. The next line begins an input procedure
definition. An input procedure definition starts with the word IDEFINE and ends with
the word END. IDEFINE usually is abbreviated to IDEF. The IDEFINE command
requires the name of the input procedure and the number of input channel pipes read
by the input procedure. A is the name chosen for the input procedure in this
application. Input channel pipes are numbered consecutively from 0. Input procedure
A has 3 input channel pipes, numbered 0, 1, and 2.

The three SET commands associate the analog input pins with the input channel pipes.
Input channel pipe 0 is set to single-ended input 2 (S2). Input channel pipe 1 is set to
single-ended input 5 (S5). Input channel pipe 2 is set to differential input 0 (DO).

Input 17

The TIME command sets the sampling time to 10,000 microseconds. Since the input
configuration samples three pins, each pin is sampled every 30,000 microseconds.

END marks the end of the input procedure definition.

The word PDEFINE begins a processing procedure definition. PDEFINE is usually
abbreviated to PDEF. The PDEFINE command is followed by the name of the
processing procedure. B is chosen for the name of the processing procedure in this
application. You are free to choose other names for procedures in your applications.

The BPRINT command transfers binary data from all input channels to the binary
communications pipe $BINOUT. The Data Acquisition Processor transfers binary
data in $BINOUT directly to the PC. The BPRINT task continues until sampling is
stopped.

END marks the end of the processing procedure definition.

DAPview Note: DAPview must be specially configured to read binary data from a
Data Acquisition Processor. Use the Data Select menu to set the Data Type to Binary.
Use the Binary Rec Size menu to set the number of binary words per record; in the
first example above there are three input channel pipes that create three words per
record. For most command lists, DAPview Plus makes the correct selections
automatically if autoconfiguration is enabled.

DAPview Note: Data can be sent to the PC faster than DAPview can process the data.
When this occurs, data are buffered in PC memory. When DAPview is processing
buffered data, there is a time lag required to recognize DAPL commands, including
STOP. This effect can be avoided by configuring applications to generate binary data
at average rates which are slower than the maximum processing rate of DAPview.

DAPview Note: Using DAPview, DAPL commands can be entered either from the PC
keyboard or from command files on disk in the host PC. Command files can be
created using the integrated editor of DAPview, or using any other text editor in the
host PC. The DAPview Run command sends a command file to the Data Acquisition
Processor.

Figure 3 shows how this application passes data from the analog input pins to the host
PC.

18 Input

<
<3
<
<

Analog input pins

Channel pipes

]

NANAN)
BPRINT Task
CJ Host

Figure 3. Sampling Three Inputs

The previous commands define how this application acquires and transfers data to the
PC. Data collection begins when the Data Acquisition Processor receives a START
command:

START A, B

The BPRINT task transfers data values from each input channel pipe in the order
listed in the input procedure. The host program running on the PC must know the
number of data channels sent from the Data Acquisition Processor in order to
correctly display the data. Some programs such as DAPview Plus and DAPwindows
automatically determine the number of data channels by examining the DAPL
command file. Other programs such as DAPview must be user-configured.

Note that all the raw data are divisible by either 8 or 16, depending upon whether the
Data Acquisition Processor is configured for unipolar or bipolar input. The binary
format of the raw data from the Data Acquisition Processor is described in Chapter 2
of the DAPL Manual.

Because the sampling time has been set to 0.01 seconds per pin, and there are three
pins, each pin is sampled every 0.03 seconds, or 33.3 times per second. The BPRINT
task generates 100 values per second.

To stop sampling, the following command should be issued:

STOP

Input 19

This command stops the input procedure and the processing procedure. Analog

sampling is stopped and the BPRINT task is halted. The application can be restarted
by reissuing the START command.

DAPview Note: Pressing function key <F9> displays a graph of the acquired data.

20 Input

Application 2 — Sampling 5000 Values

An active input procedure normally continues sampling data until the Data
Acquisition Processor receives a STOP command. An application may, however,
require a specific number of samples. This capability is provided by the COUNT input
command:

COUNT 5000

This command configures the input procedure to acquire 5000 samples and then stop
acquisition. COUNT only stops acquisition; processing of the acquired data continues.

External triggering is another option that controls when sampling is performed. An
external trigger is a digital input signal. When the external trigger signal is high,
analog sampling begins. Sampling continues until the COUNT limit of the input
procedure is reached, or until the Data Acquisition Processor receives a STOP
command. The external trigger input is available on the Data Acquisition Processor
analog expansion connector. See the Hardware Manual for additional details about the
external trigger.

The following command list performs high-speed acquisition of 100 data values.

RESET

IDEFINE A 1
SET IPIPEO SO
TIME 20
COUNT 100
HTRIGGER ONESHOT
END

PDEFINE B
BPRINT
END

START A, B

Single-ended input pin 0 is digitized at a rate of 50,000 samples per second. One
hundred data values are acquired in two milliseconds. The HTRIGGER ONESHOT
command selects external hardware triggering. To use an external trigger, the START
command should be issued while the external trigger is low. Sampling begins when
the external trigger makes a low to high transition.

Before restarting the procedures in an application, it is important to send a STOP
command without parameters. A RESET command also will stop all processes.

Input 21

Application 3 — Digital Input

Synchronous binary input allows the Data Acquisition Processor to monitor digital
input lines with sampling times synchronized to the analog inputs. This has many
applications, including precise triggering from conditions derived from the digital
input lines.

One digital input port senses up to 16 digital lines simultaneously. Hardware
discriminates between low voltages and high voltages. It also is possible to read
digital signals using analog inputs, and then to discriminate between low and high
signals in software. Reading digital signals through digital inputs, however, is more
efficient than reading digital signals through analog inputs.

The following DAPL commands configure the Data Acquisition Processor to sample a
digital input port and three analog inputs.

RESET

IDEFINE A 4
SET IPIPEO BO
SET IPIPE1 SO
SET IPIPE2 S1
SET IPIPE3 S2
TIME 10000
END

PDEFINE B
BPRINT
END

START A, B

The first SET command associates input channel pipe 0 with binary input port zero.
Unless binary inputs are expanded externally, only one binary input port is available
and the binary input port number is ignored. See the Hardware Manual for details on
digital input expansion. With expansion, the Data Acquisition Processor supports
eight 16-bit binary input ports. The DAP 800 has one 8-bit binary input port and does
not support expansion. The digital input bits of the DAP 800 appear in the low-order
byte, and the high order byte is zero.

The binary input port has 10K pull-up resistors on all inputs. Because of the pull-up
resistors, unused inputs default to high TTL levels and are read by the Data
Acquisition Processor as binary 1's.

Analog inputs pass through two pipeline stages, and digital data pass through one
pipeline stage, before transmission to the Data Acquisition Processor microprocessor.

22 Input

Therefore, binary data values on digital port BO are sampled at the same time as the
analog value is held on single-ended input SO. This feature permits sampling of a
digital input at the same time as an analog input.

When input procedure A and processing procedure B are started, the BPRINT task
transfers the data from the input channel pipes in order. The first value transferred
represents the bits from the binary input port, interpreted as an integer.

Input 23

4. Basic Real-Time Processing

Application 4 — Averaging

This application transfers the value of a single input channel pipe once every second.
The Data Acquisition Processor maximum sampling interval is about 25 milliseconds,
far too short for the desired data output rate. By using an AVERAGE task to average a
number of data values, however, the volume of data can be reduced to one value every
second. Such averaging not only reduces the data output rate but it also improves the
accuracy of the output by reducing the effect of noise in the input signal. In
applications where averaging is not desirable, the SKIP or 1IGNORE commands also
reduce the output rate. The following commands perform input data averaging.

RESET
IDEFINE A 1
SET IPIPEO S6
TIME 8333
END
PDEFINE B
AVERAGE (IPIPEO, 120, $BINOUT)
END
START A, B

Figure 4 illustrates this application.

The IDEFINE command begins the definition of the input procedure. The sampling
time is set to 8333 microseconds, corresponding to a sampling rate of 120 samples per
second. This is a useful sampling rate for removing 60-Hz noise induced from power
lines. By sampling at twice the power line frequency, an equal number of high and low
noise values are sampled which cancel each other when averaged. (The sampling
frequency in this application should be adjusted, depending on the local power supply
frequency.) Power supply interference is a common source of noise in data acquisition
applications.

The PDEFINE command begins the definition of a processing procedure named B. An
AVERAGE command defines a task that reads 120 data values from input channel pipe
0, averages the values, and places the average into the binary communications pipe
$BINOUT. Since the sampling rate is 120 samples per second, one average is
generated every second.

Basic Real-Time Processing 25

The command START A, B activates both procedures. The Data Acquisition
Processor sends the one averaged data value to the PC per second.

S6

U Analog input pin
@ Channel pipe

AVERAGE 120 Task

8$BINOUT Pipe

CJ Host

Figure 4. Averaging

26 Basic Real-Time Processing

Application 5 — Peak Detection

DAPL can be used to detect peaks in the input data. If peaks are well separated in
time, the HIGH and LOW commands can be used to determine their heights and
locations. For example, consecutive peaks of a normal canine heart electrocardiogram
(EKG) are separated by minimum times of 0.3 seconds. This characteristic can be
used to detect the height of each peak. The following command list illustrates how this
is accomplished:

RESET
IDEFINE A 1
SET IPIPEO SO
TIME 1000
END
PDEFINE B
HIGH (1PO, 300, $BINOUT)
END
START A, B

Figure 5 shows this application. The HIGH task receives data from input channel pipe
0 and scans blocks of 300 data values. With a sampling time of 1 millisecond, each
block corresponds to 0.3 seconds of sampling time. Each number placed in $BINOUT
corresponds to the maximum of a block. If a number is large, a peak occurred in this
block. If the number is small, no peak occurred.

Note: The HIGH and LOW commands have optional fourth parameters which may
be used to determine exactly where in each block of data a peak or valley occurs.

The above command list can be extended by adding a RANGE task to remove all data
values which do not correspond to peaks:

RESET

PIPES PO

IDEFINE A 1
SET IPIPEO SO
TIME 1000
END

PDEFINE B
HIGH (1PO, 300, PO)
RANGE (PO, INSIDE, 5000, 30000, $BINOUT)
END

START A, B

Basic Real-Time Processing 27

The RANGE command reads data from pipe PO and passes data values to $BINOUT if
the values are between 5000 and 30000. In this manner, small data values generated
by HIGH are never sent to the PC.

DAPL offers more sophisticated techniques for this sort of application, using software
triggers and the PEAK command. See the Detecting Peaks Using PEAK application for
an example.

S1 . .
Analog input pin
'(')’ Channel pipe
HIGH 300 Task

@$BINOUT Pipe

Q Host

Figure 5. Peak Detection

28 Basic Real-Time Processing

Application 6 — Real-Time Data Analysis

DAPL permits linking the output of one task into the input of another task for
sophisticated data processing. This application illustrates linking a number of
commands. The Data Acquisition Processor is configured to sample an input pin,
compute an average to smooth the data, and send the derivative and the square root of
the integral of the averaged data to the host PC. The command file is:

RESET
PIPES PO,P1 LONG,P2,P3
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
AVERAGE (IPO, 10, PO)
INTEGRATE (PO, P1)
SQRT (P1, P2)
DELTA (PO, P3)
MERGE (P2, P3, $BINOUT)
END
START A, B

A diagram of this application is shown in Figure 6.

The INTEGRATE task performs integration. Its output goes into long pipe P1. A square
root operation is performed on the data by the SQRT task. The DELTA task performs
differentiation on the same data stream. Note that more than one command can read
data from the same pipe.

Data are sent to the PC by the MERGE task. MERGE puts all data from the SQRT and
DELTA tasks into the binary communications pipe $BINOUT.

Basic Real-Time Processing 29

AVERAGE 10

J

INTEGRATE

:

SQRT

DELTA

NN
MERGE

$BINOUT

)

Analog input pin

Channel Pipe

Task

Pipe

Tasks

Pipes

Task

Pipes

Task

Pipe

Host

Figure 6. Real-Time Data Analysis

30

Basic Real-Time Processing

Application 7 — DAPL Expressions

DAPL expressions define arithmetic and logical operations on data. A DAPL
expression defines a task which reads data, performs arithmetic or logical operations,
and writes results to an output pipe. The complete syntax of DAPL expressions is
given in Chapter 8 of the DAPL Manual.

The following example uses a DAPL expression to scale digitized input data into
volts. The result of the DAPL expression is sent directly to the binary communications
pipe $BINOUT.

RESET
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
$BINOUT = IPO * 5000 / 32767
END
START A, B

If the Data Acquisition Processor analog input is configured for a -5 to +5 volt range,
an input value of -32768 represents an input voltage of -5.000 volts and an input value
of +32767 represents an input voltage of +4.998 volts. Therefore, multiplying input
data by the factor 5000/32768 converts data into units of millivolts. Scale factors must
be 16-bit numbers, so the ratio used in this example is adjusted to 5000/32767.

Basic Real-Time Processing 31

Application 8 — Extracting a Bit from a Digital Input

This application uses an EXTRACT command to extract the value of a single bit from
the digital input port. The value of bit 3, for example, can be found with an EXTRACT
command and placed in a pipe.

The format of the data from the digital input port is
XXXX XXXX XXXX bxxx
where b denotes the bit in position three, and x's denote bits which are to be ignored.

The command list for this application is:

RESET
IDEF A 1
SET IPO B
TIME 10000
END
PDEF B
EXTRACT (IPO,3,$BINOUT)
END
START A, B

A diagram of this application is shown in Figure 7.

This DAPL command list defines an input procedure which samples binary data with
one input channel pipe. An EXTRACT command reads from input channel pipe 0 and
calculates the value of bit 3. The result, either 0 or 1, is placed into $BINOUT.

Note that DAPL expressions also can be used to manipulate and extract bits.

$BINOUT = (IPO >> 3) & 1

32 Basic Real-Time Processing

Extract

N

$BINOUT

)

Basic Real-Time Processing

Digital Input
Channel Pipe
Task
Pipe
Host

Figure 7. Extracting a Bit

33

Application 9 — Finding Histograms

This application uses the PCOUNT command to create a histogram which summarizes
how many sample values fall into each of several user-defined ranges. A RANGE task
transfers values in a specified range. A PCOUNT task reads data from a pipe, counts the
data, and places the count in a variable.

RESET
PIPES P1,P2,P3,P4
VARIABLES V1,V2,V3,V4
IDEF A 1
SET 1PO SO
TIME 10000
COUNT 1000
END
PDEF B
RANGE (IPO, INSIDE, 1, 1000, P1)
RANGE (IPO, INSIDE, 1001, 2000, P2)
RANGE (IPO, INSIDE, 2001, 3000, P3)
RANGE (IPO, INSIDE, 3001, 4000, P4)
PCOUNT (P1, V1)
PCOUNT (P2, V2)
PCOUNT (P3, V3)
PCOUNT (P4, V4)
END
START A, B

Figure 8 shows a diagram of this application.

The input procedure configures the Data Acquisition Processor to sample an analog
input one thousand times at 100 Hz.

The RANGE tasks transfer data values within specified ranges to pipes P1, P2, P3,
and P4. Notice that four tasks read data from the same input channel pipe. DAPL
allows any number of tasks to share input channel pipe and pipe data. The PCOUNT
tasks count the numbers of values in each of the four pipes. These counts are placed in
variables V1 through V4.

34 Basic Real-Time Processing

RANGE RANGE RANGE RANGE
1, 1000 1001, 2000 2001, 3000 3001, 4000
P1 P2 P3 P4
PCOUNT PCOUNT PCOUNT PCOUNT

Figure 8. Finding Histograms

To run this application, start the input and processing procedures. After acquiring and
processing all of the input data, issue the following command:

SDISPLAY V1,V2,V3,V4

The SDISPLAY (Symbol DISPLAY) command prints information about DAPL
symbols to the Data Acquisition Processor text communications pipe $SYSOUT. In this
case, SDISPLAY prints a table in the following form:

34
235
663
68

This table presents the numbers of sample values in each of the four ranges. Since one
thousand samples were taken, these numbers divided by ten represent percentages.

Basic Real-Time Processing 35

5. Output

Application 10 — Asynchronous Output

In addition to its analog and digital inputs, the Data Acquisition Processor provides
two analog outputs and one digital output port. The DACOUT and DIGITALOUT
commands give access to these outputs. Both commands read data from variables or
pipes and transfer the data to the outputs. The following command list demonstrates
analog and digital output task definitions:

RESET

PIPE P1

VARIABLE V1

PDEF B
DACOUT (P1, 1)
DIGITALOUT (V1, 0)
END

START B

Figure 9 is a diagram of this application.

When processing procedure B is started, DACOUT reads data from pipe P1 and writes
the data to analog output #1. If the analog output is configured for the -5 to +5 volt
range, a pipe value of -32768 generates an output voltage of -5.000 volts and a pipe
value of +32767 generates an output voltage of +4.998 volts. While procedure B is
active, the DIGITALOUT task continuously reads the value of variable V1 and sends
the variable's current value to the digital output lines. When the value of V1 changes,
the state of the digital output lines changes. The value of the variable V1 can be
changed from DAPL using the LET command:

LET V1=256

Data for the pipe P1 normally would be generated by a task running in the Data
Acquisition Processor. The host PC can put data into a pipe with a FILL command:

FILL P1 1024

The analog output voltage stays the same until the DACOUT task receives a new value
from pipe P1.

Output 37

38

DACOUT

[

Digital-to-Analog
Converter

()

DIGITALOUT
0

I

Digital Output
Port

Figure 9. Digital and Analog Output

Output

Application 11 — Synchronous Output

Because DAPL is a multitasking operating system, the rate of data flow within pipes is
variable. DAPL is responsible for synchronizing tasks, so rate variations are not seen
during typical data processing operations. DACOUT and DIGITALOUT are adversely
affected by rate variations, however, since such variations result in timing jitter
between successive updates to the output ports. At update rates faster than several
Hertz, this jitter may be significant.

To eliminate timing jitter, Data Acquisition Processors have output procedures that
update the output ports at precisely timed intervals. The following command list
illustrates the use of RAVERAGE and an output procedure to create a smoothed signal
to drive a strip chart recorder. By driving the strip chart recorder with smoothed data
from the analog output pin, this application eliminates high frequency noise from the
strip chart records.

RESET

IDEF A 1
SET IPIPEO SO
TIME 8000
END

PDEF B
RAVERAGE (IPIPEO, 100, OPIPEO)
END

ODEF C 1
SET OPIPEO AO
TIME 8000
END

START A, B, C

In this application, an input pin is sampled at 125 Hz. A running average on windows
of 100 data values smoothes the data. RAVERAGE reads the data from input channel
pipe 0. The smoothed data are sent to output channel pipe 0. The output procedure C
has a SET command to define OPIPE O for output on analog output pin 0. The TIME
command specifies that the output pin is to be updated every 8000 microseconds—
125 updates per second.

IPIPE and OPIPE usually are abbreviated to 1P and OP respectively.

Output 39

Application 12 — Generating Waveforms

The Data Acquisition Processor analog output need not be derived from an input
channel pipe. The WAVEFORM command provides a means of generating common
types of periodic output data. The following commands configure a Data Acquisition
Processor to generate a 5 Hz sine wave output:

RESET
PDEF B
WAVEFORM (2, 32000, 50, OPIPEO)
END
ODEF C 1
SET OPIPEO AO
TIME 4000
CYCLE 50
END
START B, C

The first parameter of the WAVEFORM task specifies a sine wave output. Alternative
outputs are triangle, sawtooth, and square wave. The second parameter selects an
amplitude of 32000. This means that the values are sampled from an ideal sine wave
of amplitude 32000. Because of sampling effects, the output values range from
approximately -32000 to approximately +32000. The third parameter sets the period
of the sine wave to 50 samples. The result is a 5 Hz sine wave because the output
procedure reads 250 data values per second.

Note the CYCLE command in the definition of output procedure C. This command
specifies that the output data should repeat after 50 values. To improve efficiency, the
Data Acquisition Processor reads only the first 50 values from P1 and then cycles
through the data repeatedly. With a CYCLE command, the Data Acquisition Processor
can update its outputs up to the maximum output rate. See the Hardware Manual for
details on the maximum output rate of the Data Acquisition Processor.

The WAVEFORM command includes powerful modulation capabilities. The basic signal
generated by WAVEFORM can be modified by amplitude modulation or by frequency
modulation. Modulation is controlled by specifying an additional pipe parameter
which provides modulation data. Each time WAVEFORM generates a data value, it reads
a modulation value from the modulation pipe. The modulation value must be a
positive number and is interpreted as a signed binary fraction. The current amplitude
or frequency is multiplied by this modulation value before WAVEFORM generates its
next output value.

40 Output

The following commands generate a sine wave which sweeps a frequency range of
6.25 to 25 Hertz.

RESET
PIPE P1,P2
PDEF B
WAVEFORM (1, 12288, 100, P1)
P2 = P1 + 20479
WAVEFORM (2, 32000, 10, OPIPEO, 2, P2)
END
ODEF C 1
SET OPIPEO AO
TIME 4000
END
START B, C

Note that the CYCLE 50 command does not appear in this command list. Because of
the modulation, the data do not repeat after 50 updates.

The output of the first WAVEFORM can be processed by the INTERP task to generate an
arbitrary modulation function. For example, a sine wave's frequency may be
exponentially swept, and, at the same time, its amplitude may be linearly modulated.

Output 41

Application 13 — Generating Arbitrary Periodic Waveforms

Waveform data can be placed into a pipe with a FILL command. This application uses
a FILL command to fill P1 with exponential waveform data. A CYCLE command
allows analog output to start after 10 values have been copied into the output channel
pipe. CYCLE also causes the output to repeat continuously the same 10 values.

RESET

PIPE P1

PDEF A
COPY (P1, OPIPEO)
END

ODEF B 1
SET OPIPEO AO
TIME 10000
CYCLE 10
END

START A, B

FILL P1 3 7 20 54 148 403 1096 2980 8103 22026

42 Output

Application 14 — Generating Periodic Waveforms by
Copying

Data in a pipe can be recycled by copying the pipe back to itself. This application
generates a periodic waveform by maintaining a copy of the waveform data in a pipe.
The following command list illustrates how to copy a pipe back to itself and use the
data for periodic waveform generation.

RESET
PIPES P1
FILL P1 3 7 20 54 148 403 1096 2980 8103 22026
PDEF A
COPY (P1, P1, OPIPEO)
END
ODEF B 1
SET OPIPEO AO
TIME 10000
END
START A, B

Figure 10 is a diagram of this application.

A FILL command places an initial copy of exponential data into pipe P1. A COPY task
copies P1 back to itself and to output channel pipe 0. This keeps data continuously
stored in P1 and provides data for analog output.

Note that in the previous application the FILL command came after the START
command. In this application, the FILL command must precede the START command.
This avoids possible data mixing by ensuring that all data values are in the pipe before
COPY begins recycling the values.

Output 43

44

ﬁ Pipe

COPY Task

E Channel Pipe

Digital-to-Analog
Converter

Figure 10. Using COPY to Save Periodic Waveforms

Output

Application 15 — Generating Periodic Waveforms by
Interpolation

When generating a periodic waveform, an INTERP task can interpolate between data
points to provide fine resolution. This application uses INTERP to create a 50 point
exponential wave from a vector with 11 data points.

RESET
VECTOR VECX=(-500,-400,-300,-200,
-100,0,100,200,300,400,500)
VECTOR VECY=(0,3,7,20,54,148,403,1096,2980,8103,22026)
PIPES P1
PDEF A
SAWTOOTH (500, 50, P1)
INTERP (P1, VECX, VECY, OPIPEO)

END

ODEF B 1
SET OPIPEO AO
TIME 1000
CYCLE 50
END

START A, B

Figure 11 is a diagram of this application.

The DAPL command list defines two vectors for use by INTERP. VECX holds evenly
incremented values, and VECY holds values which are an exponential function of
VECX. A ramp is generated by a SAWTOOTH task which provides values that INTERP
interpolates to provide exponential waveform data. The results are sent to the analog
output.

Output 45

46

SAWTOOTH

INTERP

Digital-to-Analog

Converter

Task

Pipe

Task

Channel Pipe

Figure 11. Using INTERP to Create Waveforms

Output

Application 16 — Generating One-Shot Pulses

The default configuration of a Data Acquisition Processor output procedure is
oriented toward generating continuous analog output signals. In some applications,
however, single pulses are desired, with analog updating stopping at the end of each
pulse. This application demonstrates how to generate a 10 millisecond pulse.

When sending a single burst of analog output data, a Data Acquisition Processor
output procedure should be non-cyclical (i.e. the output procedure should not include
a CYCLE command). Instead, an UPDATE BURST command should be used to set the
output procedure to burst mode. In burst mode, the output procedure stops updating
after sending a burst of data. The output procedure stops as a result of emptying its
output channel pipes. No underflow warning message is generated when the UPDATE
BURST command is used. In burst mode, output updating automatically restarts when
more data are available.

The following DAPL listing configures a Data Acquisition Processor to output a 10
millisecond pulse.

RESET
PIPE P1
FILL P1 6000 6000 6000 6000 6000
FILL P1 6000 6000 6000 6000 6000
FILL P1 O
PDEF A
COPY (P1, OPIPEO)
END
ODEF B 1
OUTPUTWAIT 11
UPDATE BURST
SET OPIPEO AO

TIME 1000
END
START A, B

This listing uses a series of FILL commands to place 11 data values in pipe P1. The
values in P1 are copied to output channel pipe 0.

An OUTPUTWAIT command in the output procedure sets the output to begin updating
when 11 values are received in the output channel pipe. Output sampling time is set to
1000 microseconds to provide a 10 millisecond output pulse. The eleventh value in
this example is a zero value to bring the output back to zero after the pulse.

Output 47

When an output procedure is used to generate a single pulse, it usually is necessary to
adjust the value of OUTPUTWAIT. The value of OUTPUTWAIT defaults output channel
pipe buffering to approximately 500 milliseconds of data. The default value of
OUTPUTWAIT can be calculated by dividing one-million microseconds by the output
TIME parameter. This value is chosen to prevent underflow conditions in applications
that perform continuous analog output. If an output procedure needs to generate a
single burst of data with a duration of less than 1000 milliseconds, the default value of
OUTPUTWAIT must be changed. Two situations are possible:

« If the length of the output pulse is less than the default value of OUTPUTWAIT, an
OUTPUTWAIT command should be included in the output procedure. The
parameter of OUTPUTWAIT should be equal to the length of the output pulse.

« If the length of the output pulse is greater than the default value of the
OUTPUTWAIT parameter, the OUTPUTWAIT command is not needed.

48 Output

Application 17 — Using Analog Output Expansion

This application uses an Analog Output Expansion Board to provide four synchronous
analog signals. The Analog Output Expansion Board is connected to the digital output
port, so it requires output data in a special output expansion format. Format
conversion is provided by a DEXPAND task.

RESET

PIPES P1,P2,P3,P4,P5

PDEF A
SINEWAVE (30000, 100, P1)
SQUAREWAVE (30000, 100, P2)
TRIANGLE (30000, 100, P3)
SAWTOOTH (30000, 100, P4)
MERGE (P1, P2, P3, P4, P5)
DEXPAND (P5, (0,1,2,3), OPIPEO)

END

ODEF B 1
SET OPIPEO B
TIME 250
CYCLE 1600
END

START A, B

Figure 12 is a diagram of this application.

This DAPL command list defines four tasks to create four waveforms. The waveforms
are merged into pipe P5 by the MERGE task. The DEXPAND task then converts the
output data in P5 to the output expansion format of the Analog Output Expansion
Board and places the result in output channel pipe 0; the list (0,1,2,3) specifies that
the analog outputs are at addresses 0, 1, 2, 3. An output procedure sends the data in
output channel pipe 0 to the Analog Output Expansion Board which is connected to
the digital output port.

DEXPAND produces four output values for every input value, so the CYCLE length in
the output procedure must be four times the number of source data values.

Synchronous output to a Digital Expansion Board works in exactly the same way as
synchronous output to an Analog Output Expansion Board. The Analog Output
Expansion Board could be replaced by a Digital Expansion board in this application.

Output 49

SINEWAVE

SQUAREWAVE TRIANGLE

SAWTOOTH

50

MERGE

DEXPAND

Analog Output
Expansion Board

RER

0 1 2 3

Tasks

Pipes

Task

Pipe

Task

Channel Pipe

Expansion Board

Analog Outputs

Figure 12. Using the Analog Output Expansion Board

Output

6. Software Triggering

Application 18 — Software Triggers

In this application, the Data Acquisition Processor samples the voltage from a blood
pressure sensor on a laboratory animal. The Data Acquisition Processor uses software
triggering to transfer input channel pipe data only during the active part of each wave.
This reduces the data to be recorded without losing useful information.

The input pin is sampled at 1,000 samples per second. A trigger event is recognized
each time the input exceeds a trigger level of 1.5 volts. The Data Acquisition
Processor takes a specified number of samples — 10 samples before the trigger and
40 samples after the trigger — and sends these to the host for display and storage. The
command file for this application is:

RESET

TRIGGER T

IDEFINE A 1
SET IPIPEO D3
TIME 1000
END

PDEFINE B
LIMIT (1PO,OUTSIDE,-32768,9830,T,0UTSIDE,-32768,9830)
WAIT (IPO, T, 10, 40, $BINOUT)
END

START A, B

Figure 13 is a diagram of this application.

The second line of this command list defines trigger T. This trigger is used for
synchronizing trigger events to actual trigger data.

Software Triggering 51

52

D3

LIMIT
OUTSIDE
-32768
9830

$BINOUT

()

Figure 13. Trigger Scanning

Analog input pin

Channel pipe

Task

Trigger

Task

Pipe

Host

Software Triggering

The processing procedure for this application includes a LIMIT task definition and a
WAIT task definition. LIMIT is a DAPL command that asserts a trigger when it detects
a value inside a specified range. If the input voltage range of the Data Acquisition
Processor is -5 to +5 volts, the analog-to-digital converter count corresponding to 0
volts is 0 and the analog-to-digital converter count corresponding to +5 volts is 32768.
The count corresponding to 1.5 volts is (1.5 * 32768 / 5) = 9830. The lowest possible
count for the analog-to-digital converter is -32768, and only samples above 9830 are
of interest, so the region (OUTSIDE, -32768, 9830) is specified in the LIMIT task
definition. A hysteresis region is specified by repeating the parameters for the trigger
region. Hysteresis disables further trigger assertions until the input values leave the
hysteresis region. Hysteresis is described in more detail later in this chapter.

When there is a trigger event, the LIMIT task asserts trigger T and puts the sample
number of the event into trigger T. Trigger T is a software signal which the WAIT task
uses to synchronize data transfers with trigger events. WAIT synchronizes data transfer
to trigger events by matching the sample number of the trigger with the number of
samples that WAIT reads. Matching sample numbers provides exact synchronization
and is not dependent on response time between tasks.

A WAIT task continuously empties unwanted data out of the input channel pipe while
waiting for a trigger event. For each trigger event, the WAIT task transfers a specified
number of values before and after the trigger event from the input channel pipe to a
pipe. LIMIT asserts a trigger on the rising edge of each wave. WAIT then transfers
samples taken before and after the time of the rising edge of each wave.

In this application, the WAIT task transfers 10 pre-trigger and 40 post-trigger data
values to the PC using the $BINOUT communication pipe.

DAPview Note: When graphing data from a WAIT task, it often is desirable to display
data from each trigger event in a new frame. In the example above, this is
accomplished by setting Graph Number of Points to 50.

Software Triggering 53

Application 19 — Peak Detection

A PEAK task finds maxima or minima and asserts a trigger at the locations of the
peaks. The trigger can be used to extract data relative to the maxima or minima. The
following application, illustrated in Figure 14, transfers 10 data values before and 10
data values after each peak in the data from input channel pipe 0.

RESET
PIPES P1
TRIGGER T1
IDEF A 1
SET IPIPEO SO
TIME 1000
END
PDEF B
AVERAGE (1PO, 32, P1)
PEAK (P1, 2, T1)
WAIT (P1, T1, 10, 10, $BINOUT)
END
START A, B

Electrical noise may cause the least significant bits of the conversion data to fluctuate.
PEAK is sensitive to noise because it looks for changes in the derivatives of data
values. Noise may result in detection of many spurious peaks when input channel pipe
data is changing slowly.

To prevent noise from influencing the results of a PEAK task, data can be smoothed
before peak detection. The above example smoothed the data by averaging blocks of
32 data points. Another way of masking noise is to implement a low pass digital filter
with a FIRFILTER task.

PEAK allows an optional parameter to force detection of only those peaks which lie in
a specified region. To ignore peaks occurring close to zero, for example, the
parameter list of the previous PEAK process could be modified as follows:

PEAK (P1, 2, T1, OUTSIDE, -100, 100)

Another application could differentiate the data presented to PEAK using the DELTA
process to find points of maximum slope.

54 Software Triggering

l Analog input pin

E Channel Pipe

AVERAGE
30 Task

E Pipe

PEAK 2 Task
Trlgger
WAIT
10, 10 Task

8 $BINOUT Pipe

N
CJ Host

Figure 14. Peak Detection

Software Triggering 55

Application 20 — Implementing a Digital Oscilloscope

This application implements a form of digital oscilloscope. An input channel pipe is
scanned for a trigger event — in this case a positive slope exceeding 100. When a
trigger event occurs, the values in four input channel pipes are transferred to the host.
For each input channel pipe, 100 samples are acquired, 50 samples from before the
trigger event and 50 samples from after the trigger event. A diagram of this
application is in Figure 15.

RESET

PIPES PO,P1,P2,P3

TRIG T1 4

IDEF A 4
SET IPO SO
SET IP1 S1
SET IP2 S5
SET IP3 S7
TIME 5000
END

PDEF B
DLIMIT (IPO,OUTSIDE,-32768,100,T1,0UTSIDE,-32768,100)
WAIT (IPO, T1, 50, 50, PO)
WAIT (IP1, T1, 50, 50, P1)
WAIT (IP2, T1, 50, 50, P2)
WAIT (IP3, T1, 50, 50, P3)
MERGE (PO, P1, P2, P3, $BINOUT)
END

START A, B

The definition of trigger T1 is followed by the number 4. This specifies that T1 signals
four tasks. In this example, T1 signals four WAIT tasks to provide triggering on four
input channel pipes.

Notice that two tasks read data from input channel pipe 0. DAPL allows any number
of tasks to share data from an input channel pipe.

56 Software Triggering

SO S1 S2 S3
IP P P P
0 1 2 3
DLIMIT
OUTSIDE
-32,768
100
Tl
[
) L
WAIT WAIT WAIT WAIT
50, 50 50, 50 50, 50 50, 50

MERGE

@ $BINOUT

OJ

Figure 15. Digital Oscilloscope

Software Triggering

Analog input pins

Channel pipes

Task

Trigger

Tasks

Pipes

Task

Pipe

Host

57

Application 21 — Using Hysteresis

Both LIMIT and DLIMIT allow optional hysteresis specifications. Hysteresis prevents
multiple triggering from a single event. For example, suppose a sawtooth waveform is
being sampled, triggering when the wave exceeds a trigger value. See Figure 16.

The dotted line in figure 16 indicates the trigger threshold level. With no hysteresis,
data points 7, 8, 9, 10, and 11 cause trigger assertions. If one trigger per wave is
desired, only data point 7 should cause a trigger. The next trigger event should be the
start of the next waveform — point 27. To accomplish this, a hysteresis region must
be specified in the LIMIT parameter list;

LIMIT (<pipe>, <regionl>, <trigger>, <region2>)

After a value inside <regionl> is found, the trigger is asserted. Subsequent values
are ignored until a value outside <region2> is detected. The LIMIT task then
resumes scanning the data for values inside <region1>.

For the sawtooth waveform example, the hysteresis region can be the same as the
trigger region. Now, after a trigger, the data values must leave the hysteresis region
before another trigger occurs. A possible LIMIT parameter list is:

LIMIT (P, INSIDE, 500, 32767, T, INSIDE, 500, 32767)

By varying the size of the hysteresis region, a wide variety of triggering conditions
can be specified.

For example, the following command list configures a Data Acquisition Processor to

scan an input channel pipe for values that are greater than or equal to 10,000 and less
than or equal to 20,000 and to print the sample numbers of all samples in that range.

58 Software Triggering

RESET
PIPE P1 LONG
TRIGGER T1
IDEF A 1
SET 1PO SO
TIME 500
END
PDEF B
LIMIT (IPO, INSIDE, 10000, 20000, T1)
TSTAMP (T1, P1)
MERGE(P1, $BINOUT)
END
START A, B

The LIMIT task asserts a trigger each time it detects a value in the region (INSIDE,
10000, 20000). The TSTAMP task extracts the time of each trigger assertion and puts
the sample number into pipe P1.

Pipe P1 is declared as a long pipe. This means that a data value is stored internally as
a 32-bit integer, a number in the range from -2,147,483,648 to 2,147,483,647. All
trigger counts are represented as long integers. LONG integers appear in applications in
which the normal 16-bit integer range from -32,768 to 32,767 is too restrictive.

The MERGE task transfers the 32-bit sample count from pipe P1 to the 16-bit binary
communications pipe $BINOUT. When MERGE transfers a long value to a word output
pipe, two words are placed in the output pipe. The least significant word is followed
by the most significant word.

DAPview Note: To display the 32-bit values generated by TSTAMP, replace the MERGE
task with a FORMAT task. The FORMAT task sends values to the PC as text using the
text communications pipe $SYSOUT. For more information on text communication
from the Data Acquisition Processor see the Communications chapter in this manual.

Unless values in the particular region (INSIDE, 10000, 20000) are rare, this
application may overload the PC. Adding hysteresis reduces the number of trigger
events. If the parameter list of LIMIT is changed to the line below, trigger T1 is
asserted the first time a value in the region (INSIDE, 10000, 20000) is detected
and is not asserted again until a value outside the region (INSIDE, 9000, 21000)
is detected.

LIMIT (O, INSIDE, 10000, 20000, T1, INSIDE, 9000, 21000)

Software Triggering 59

Hysteresis provides the ability to trigger only once. When a hysteresis region covers
the entire range, no values can leave the hysteresis region to reset triggering. After the
first trigger event, the procedure must be stopped and restarted to enable additional

trigger events.

LIMIT (O, INSIDE, 10000, 20000, T1, INSIDE, -32768, 32767)

Point 7 Point 27

Figure 16. Triggering Hysteresis

60 Software Triggering

Application 22 — Triggering on Two Conditions

This application monitors two input channel pipes. If values from either channel pipe
rise above a trigger region, blocks of data from both input channel pipes are sent to
the PC. A TOR task merges trigger events to allow both input channel pipes to send
data.

RESET
PIPES P1,P2
TRIGGER T1, T2, T3 2
IDEF A 2
SET IPO SO
SET IP1 S1
TIME 1000
END
PDEF B

LIMIT (IPO, INSIDE,10000,32767,T1, INSIDE, 10000,32767)
LIMIT (IP1,INSIDE,10000,32767,T2, INSIDE,10000,32767)
WAIT (IPO, T3, 1000, 19000, P1)
WAIT (IP1, T3, 1000, 19000, P2)
TOR (T1, T2, T3)
MERGE(P1, P2, $BINOUT)
END
START A, B

Figure 17 is a diagram of this application.

The DAPL command list configures an input procedure to sample two input pins at
500 Hz. A processing procedure defines two LIMIT tasks that read data from the input
channel pipes and assert triggers T1 and T2 whenever their respective values are at
least 10,000. A hysteresis region is specified so that once a value is found in the
trigger region, subsequent values are ignored until a value outside of the trigger region
is detected. The triggers are merged into T3 by a TOR task. Two WAIT tasks transfer
data from the input channel pipes to P1 and P2 whenever trigger T3 is asserted.

Note: There also is a TAND command for combining triggers with a logical AND
operation.

Software Triggering 61

SO S1
P P
0 1
LIMIT LIMIT
Tl T2
TOR
T3
WAIT WAIT
1000, 19000 1000, 19000
MERGE
$BINOUT

62

Figure 17. Combining Triggers

Analog input pins

Channel pipes

Tasks

Triggers

Task

Trigger

Tasks

Task

Pipe

Host

Software Triggering

Application 23 — Retriggering

A WAIT task transfers a block of data for each valid trigger event and ignores
subsequent trigger events which occur within the block of data being transferred, as
these would cause it to transfer overlapping blocks. In some applications, it is
important to save a block of data around every trigger event, even when trigger events
occur close together. This can be achieved by processing the triggers with a
RETRIGGER task.

This application uses a RETRIGGER task to save a block of at least 1000 data values
around every trigger event, 100 values before the trigger event and 900 values after.

RESET
TRIGGER T1,T2
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
WAIT (IPO, T2, 100, 900, $BINOUT)
LIMIT (IPO, INSIDE,0,32767,T1, INSIDE,0,32767)
RETRIGGER (T1, 1000, T2)
END
START A, B

Figure 18 is a diagram of this application.

The input procedure configures the Data Acquisition Processor to sample one input
pin at 100 Hz. A WAIT task waits for a valid trigger event to begin transferring data to
$BINOUT. A LIMIT task scans input channel pipe 0 for a trigger condition and places
trigger events in T1. RETRIGGER transfers trigger events to T2 in a way which ensures
that WAIT transfers at least 100 values before each trigger event and 900 values after
each trigger event. If triggers occur close together, RETRIGGER places trigger events
1000 counts apart.

Software Triggering 63

U Analog input pin
P Channel pipe
0
LIMIT
INSIDE Task
5000 32767
T1 Trigger
RETRIGGER
1000 Task
WAIT
100, 900 Task
$BINOUT Pipe
D Host

Figure 18. Capturing Every Trigger Event

64 Software Triggering

Application 24 — Spike Detection

Some applications sample signals containing occasional high-speed spikes. To resolve
the spikes, the sampling speed should be high. In order to avoid overloading the PC, a
trigger should be used to let the Data Acquisition Processor discard most of the
uninteresting data.

As an example, assume spikes have a typical duration of two milliseconds and that 20
samples of a spike waveform are required. If a sample value greater than 10,000
indicates that a spike has occurred, the following application produces the required
results:

RESET

TRIG T1

IDEF A 1
SET 1PO SO
TIME 100
END

PDEF B
LIMIT (1PO,OUTSIDE,-32768,10000,T1,0UTSIDE,-32768,10000)
WAIT (IPO, T1, 10, 10, $BINOUT)
END

START A, B

If a spike occurs approximately every second, this application transfers data at a rate
of 20 values per second, even though data are being sampled and analyzed at 10,000
samples per second.

Software Triggering 65

If spikes occur substantially faster than once per second, this application may produce
too much data for the host PC to handle. A possible approach is to average groups of
100 spikes and return the averages, as shown in the following command list:

RESET

PIPE P1

TRIG T1

IDEF A 1
SET IPO SO
TIME 100
END

PDEF B
LIMIT (1PO,OUTSIDE,-32768,10000,T1,0UTSIDE,-32768,10000)
WAIT (IPO, T1, 10, 10, P1)
BAVERAGE (P1, 20, 100, $BINOUT)
END

START A, B

The BAVERAGE task reads 100 blocks of 20 values and computes an averaged block of
data. After the BAVERAGE task processes 100 blocks, it writes a single block of 20
values to $BINOUT.

The MINTIME command also is available to restrict excessive triggering. A MINT IME
task ignores triggers which occur too close together:

RESET
TRIGGERS T1, T2
IDEF A 1
SET IPO SO
TIME 100
END
PDEF B
LIMIT (1PO,OUTSIDE,-32768,10000,T1,0UTSIDE,-32768,10000)
WAIT (IPO, T2, 10, 10, $BINOUT)
MINTIME (T1, 10000, T2)
END
START A, B

This example forces consecutive triggers T2 to be spaced at least 10,000 samples
apart, corresponding to a maximum of one trigger per second.

Another data reduction alternative is to ignore a specified fraction of the trigger

events. The NTH task in the following command list ignores 99 out of every 100
spikes.

66 Software Triggering

RESET
TRIGGERS T1,T2
IDEF A 1
SET IPO SO
TIME 100
END
PDEF B
LIMIT (1PO,OUTSIDE,-32768,10000,T1,0UTSIDE,-32768,10000)
WAIT (1PO, T2, 10, 10, $BINOUT)
NTH (T1, 100, T2)
END
START A, B

Software Triggering

67

Application 25 — Time Stamping Pulses

This application records the times at which pulses occur and the peak values in the
input channel pipe in a short time interval following the trigger. In order to make the
observations less sensitive to noise, the application averages data in blocks of four
values.

Figure 19 illustrates this application.

RESET
PIPES P1,P2,P3 LONG,P4
TRIGGER T 2, T1
IDEFINE A 1
TIME 250
SET I1PO D3
END
PDEFINE B
AVERAGE (IPO, 4, P1)
LIMIT (P1, OUTSIDE, -32768, 9830, T, OUTSIDE, -32768,
9830)
WAIT (P1, T, 0, 50, P2)
MINTIME (T, 50, T1)
TSTAMP (T1, P3)
HIGH (P2, 50, P4)
MERGE (P3, P4, $BINOUT)
END
START A, B

Notice the number 2 in the definition of trigger T. This number tells DAPL that the
trigger signals two tasks, as seen in Figure 19.

To allow for averaging, the sampling time is reduced from 1000 microseconds to 250
microseconds. Input channel pipe 0 passes data to an AVERAGE task. The AVERAGE
task computes averages of groups of four samples and places the results in pipe P1.

The LIMIT task reads the averaged data from pipe P1. When it finds an average above
the specified limit of 9830, it asserts trigger T. Hysteresis prevents multiple triggers
from a single pulse. Each time a trigger event occurs, the WAIT task synchronized by
trigger T transfers data from pipe P1 to pipe P2.

68 Software Triggering

C3(Q

AVERAGE

]

LIMIT
OUTSIDE
-32768 9830

0

WAIT
| MINTIME| | 0. 50

o

T1 E
HIGH

TSTAMP 50

Analog input pin

Channel pipe

Task

Pipe

Task

Trigger

Tasks

Pipe

Tasks

Pipes

Task

Pipe

Host

Figure 19. Time Stamping Pulses

Software Triggering

69

The TSTAMP task waits for a trigger event, determines the sample count of each trigger
event, and places the sample count in long pipe P3. The sample counts should be
multiplied by the time between samples to give the time from the start of sampling. A
MINT IME task processes the trigger to not allow triggers that are closer together than
50 values. This is necessary because triggers that are closer than 50 values apart are
ignored by the WAIT task but are used by the TSTAMP task. In this application,
MINT IME ensures that time stamp values are matched properly with data values.

The HIGH task reads each block of 50 data values generated by the WAIT task,
determines the maximum of each block, and places the maxima in pipe P4.

Finally, the MERGE task transfers the contents of pipes P3 and P4 to $BINOUT. Since
pipe P3 is declared as a long pipe, MERGE transfers a total of three words to $BINOUT
for each trigger event. The first two words are the low and high-order words of the
trigger event sample number from P3. The third word is the maximum value of the
input channel pipe after the trigger.

It is important to note that this application generates data for P3 and P4 at the same
rate — each trigger event generates one number for P3 and one number for P4. If P3
and P4 received data at different rates, a MERGEF task would be required to transfer
flagged data to $BINOUT.

70 Software Triggering

Application 26 — Detecting Bit Transitions

This application detects transitions at the digital input port. The application prints
each sample number at which the digital input value changes, together with the new
value. This application could be used, for example, to analyze the contact bounce
behavior of a multiple pole switch.

RESET
PIPE P1, P2 LONG
TRIG T1 2
IDEF A 1
SET IPO BO
TIME 100
END
PDEF B
CHANGE (I1PO, T1)
WAIT (IPO, T1, 0, 1, P1)
TSTAMP (T1, P2)
MERGE (P2, P1, $BINOUT)
END
START A, B

The CHANGE task scans input data and asserts a trigger each time an input value
changes. The WAIT task passes each new data value to pipe P1. The TSTAMP task
converts each trigger assertion to a time stamp. The sample count and new value are
transferred by merging P1 and P2 to $BINOUT.

CHANGE also can be used to scan for changes in analog data. In analog applications an
optional third parameter usually is included. When this parameter is present, the
CHANGE task asserts a trigger only when its input changes by more than the value of
the parameter. For example:

CHANGE (IPIPEO, T1, 100)

This task asserts T1 when consecutive samples change by more than 100 counts. This
is a useful command for implementing data compression for slowly varying data.

The LOGIC command provides another means of detecting changes in binary input
data. LOGIC accepts three parameters which specify the bit transitions to detect. These
parameters are described fully in the DAPL Manual. The following procedure outlines
how to compute useful values for the three LOGIC parameters:

Software Triggering 71

1. Determine which bits to use for triggering. Set the corresponding bits of the
third parameter to one.

2. To trigger when a particular bit goes from 0 to 1, set the corresponding bit of
second parameter to zero. To trigger when a particular bit goes from 1 to 0, set
the corresponding bit of second parameter to one.

3. Set the fourth parameter to the number zero.

4. If more than one bit is used as a trigger, LOGIC asserts the trigger on the
transition that causes all the enabled bits to be in their triggering states.

The following example asserts trigger T1 when bit 3 of the digital input port changes
to one and bit 1 of the digital input port changes to zero:

RESET
TRIGGER T1
IDEF A 1
SET IPIPEO BO
TIME 1000
END
PDEF B
LoGciICc (IPIPEO, 2, 10, 0, T1)
END

72 Software Triggering

Application 27 — Using Triggers to Calculate Frequency

A trigger carries information about the times at which trigger events occur. For many
applications, the frequency at which events occur is important, but the times are not.
The Data Acquisition Processor can convert trigger data to frequency data. The
following command list computes the frequency at which the binary input port is
changing its value:

RESET

TRIG T1

IDEF A 1
SET IPO BO
TIME 10000
END

PDEF B
CHANGE (1PO,T1)
FREQUENCY (T1, 100, $BINOUT)
END

START A, B

The numbers printed by this application indicate the numbers of trigger assertions in
each 100 samples. Since the sampling frequency is 100 samples/second, the numbers
represent the trigger assertion frequency in Hz. In other applications, it may be
necessary to scale the output of a frequency task to produce a frequency in Hz.

Software Triggering 73

7. Further Real-Time Processing

Application 28 — Finding Deviations between Inputs

A DAPL expression can be used in conjunction with LIMIT to find deviations
between two inputs. For example, the following application determines the locations
at which data from two input channel pipes differ by more than 100.

RESET
PIPES P1, P2 LONG
TRIG T1
IDEF A 2
SET 1PO SO
SET IP1 S5
TIME 10000
END
PDEF B
P1 = IPO - IP1
LIMIT (P1, OUTSIDE, -100, 100, T1)
TSTAMP (T1, P2)
MERGE (P2, $BINOUT)
END
START A, B

Figure 20 displays a diagram of this application.

Further Real-Time Processing 75

SO S1

l l Analog input pins
E E Channel pipes
ICHO -ICH1 DAPL expression
Pipe
LIMIT
OUTSIDE Task
-100, 100
™)
TSTAMP Task
Pipe

MERGE Task

@$BINOUT Pipe

)

Figure 20. Scanning for Deviations Between Inputs

76 Further Real-Time Processing

Application 29 — Thermocouple Linearization

Thermocouples are temperature sensors that generate voltages that depend on
temperature. The relationship between voltage and temperature is nonlinear, so special
computations must be performed to convert thermocouple voltages to temperatures.

Cold junction compensation establishes a reference voltage which is compared to the
voltage generated by a thermocouple. Thermocouples usually require cold junction
compensation.

The following command list can be used to sample a thermocouple, linearize the
thermocouple data, and transfer one temperature reading every second. The two
thermocouple leads should be connected to pins SO and GO of the Data Acquisition
Processor. In this case the cold junction temperature is assumed to be fixed at 20.0
degrees; the cold junction temperature also can be measured by the Data Acquisition
Processor.

RESET

PIPE P1

VARIABLE REF=200

IDEF A 1
SET IPIPEO SO 100
TIME 10000
END

PDEF B
AVERAGE (IPIPEO, 100, P1)
THERMO (P1, 1, 5000, 32767, $BINOUT, REF)
END

START A, B

In this DAPL command list, the first THERMO parameter is the input pipe for
thermocouple data. Notice the use of averaging to reduce noise. The second parameter
specifies the type of thermocouple sensor being measured — in this case, a J-type
thermocouple. The next two parameters define the input scale factor, which is derived
below. The variable REF contains the temperature of the reference junction, as
described below. Temperature data is sent to the host PC through the binary
communications pin, $BINOUT.

The THERMO command receives input voltages scaled so that each count represents ten
microvolts. If the Data Acquisition Processor is configured for a -5 to +5 volt input
range and the input pin is sampled at a gain of 100, then a digitized value of 32768
corresponds to a 0.05 volt input. Each count represents 0.05/32768 or 1.53

Further Real-Time Processing 77

microvolts. To convert these values to ten microvolt units, multiply digitized data by a
scale factor of 1.53/10. This scale factor can be converted to a ratio of integers,
5000/32768. THERMO scale factors are 16-bit numbers, so the ratio used in the THERMO
task is adjusted to 5000/32767.

The variable REF supplies information for cold junction compensation. Thermocouple
cold junction compensation establishes a reference voltage which is compared to the
voltage generated by the thermocouple. The reference voltage is determined by the
temperature of the termination board to which the thermocouple leads are connected.
In the above example, the reference temperature (expressed in tenths of a degree
Celsius) is set to 20.0 degrees.

If the reference junction temperature changes over time, the Data Acquisition
Processor can be configured to automatically sense the reference junction temperature
and keep the variable REF updated using the PVALUE command. Some Analog
Termination Boards from Microstar Laboratories have provisions for a thermistor
circuit for sensing the reference temperature. See the end of this application for more
information.

78 Further Real-Time Processing

Improving Thermocouple Accuracy

The accuracy of thermocouple sampling can be improved by removing a DC ground
offset from the thermocouple readings. The THERMO command allows a parameter
which removes ground offsets. This parameter is a word variable that should be kept
updated to the value of the Data Acquisition Processor internal ground reference. The
following command list illustrates offset correction:

RESET
PIPES P1,P2
VARIABLE REF=200,GRND
IDEF A 2
SET IPIPEO G 100
SET IPIPE1 SO 100
TIME 5000
END
PDEF B
AVERAGE (IPO, 100, P1)
AVERAGE (IP1, 100, P2)
PVALUE (P1, GRND)
THERMO (P2, 1, 5000, 32767, GRND, $BINOUT, REF)
END
START A, B

The value of ground is sampled at the same gain as the thermocouple. The ground
data values are averaged and placed in pipe P1. The PVALUE command keeps the
variable GRND updated to the current ground reading. The THERMO command subtracts
this ground value from the thermocouple readings.

Note: This command list updates the value of the ground offset variable, GRND,
once per second. Since the value of GRND defaults to zero, the first temperature
value displayed will not include a ground offset correction. This behavior can be
avoided by using a separate set of input and processing procedures to initialize the
value of GRND before running this application.

Further Real-Time Processing 79

Converting Temperatures to Fahrenheit

The output units of the THERMO command are in tenths of a degree Celsius. A DAPL
expression can be used to convert the data to degrees Fahrenheit:

RESET
PIPES P1,P2,P3
VARIABLE REF=200,GRND
IDEF A 2
SET IPIPEO G 100
SET IPIPEL SO 100
TIME 5000
END
PDEF B
AVERAGE (IPO, 100, P1)
AVERAGE (IP1, 100, P2)
PVALUE (P1, GRND)
THERMO (P2, 1, 5000, 32767, GRND, P3, REF)
$BINOUT = (P3*9/5) + 320
END
START A, B

In this example, if a value of 540 is sent to the PC, the temperature in Fahrenheit is
54.0°. If you want to send data to the PC with the decimal in place, send the data as
text using a FORMAT command. Declare pipe P4 and use the following lines:

P4 = (P3*9/5) + 320
FORMAT (P4:1)

The :1 decimal point specification adds a decimal point to the data sent to the PC.

80 Further Real-Time Processing

Sampling Several Thermocouples

Many thermocouples can be monitored simultaneously. The following command list
illustrates reading three thermocouples every second, including linearization and
conversion to Fahrenheit units:

RESET
PIPES P1,PA2,PB2,PC2,PA3,PB3,PC3,PA4,PB4,PC4
VARIABLE REF=200,GRND
IDEF A 4
SET IPIPEO G 100
SET IPIPEL SO 100
SET IPIPE2 S1 100
SET IPIPE3 S2 100
TIME 2500
END
PDEF B
AVERAGE (IPO, 100, P1)
AVERAGE (IP1, 100, PA2)
AVERAGE (IP2, 100, PB2)
AVERAGE (IP3, 100, PC2)
PVALUE (P1, GRND)
THERMO (PA2, 1, 5000, 32767, GRND, PA3, REF)
THERMO (PB2, 1, 5000, 32767, GRND, PB3, REF)
THERMO (PC2, 1, 5000, 32767, GRND, PC3, REF)
PA4 = (PA3*9/5) + 320
PB4 = (PB3*9/5) + 320
PC4 = (PC3*9/5) + 320
MERGE (PA4,PB4,PC4, $BINOUT)
END
START A, B

Further Real-Time Processing 81

Sampling Many Thermocouples

When sampling many thermocouples, it is possible to define more tasks than can fit
into available heap memory. One way to avoid heap memory overflow is to merge all
thermocouple inputs into a single data stream. The BAVERAGE and THERMO commands
can process merged thermocouple data while keeping values in order so they can be
separated later. Only a few commands are needed to process many thermocouples.
The following example uses ten thermocouple inputs for illustration.

RESET
PIPES P1,P2,P3
VARIABLE REF=200,GRND
IDEF A 11
SET IPO G 100
SET IP1 SO 100
SET IP2 S1 100
SET IP3 S2 100
SET IP4 S3 100
SET IP5 S4 100
SET IP6 S5 100
SET IP7 S6 100
SET IP8 S7 100
SET IP9 S8 100
SET IP10 S9 100
TIME 2000
END
PDEF B
AVERAGE (IPO, 100, P1)
PVALUE (P1, GRND)
BAVERAGE (IP(1,2,3,4,5,6,7,8,9,10), 10, 100, P2)
THERMO (P2, 1, 5000, 32767, GRND, P3, REF)
$BINOUT = (P3*9/5) + 320
END
START A, B

The BAVERAGE command averages corresponding values in blocks of data from input
channel pipe 1 through 10 to get the average of each input channel pipe. A single
THERMO command calculates the temperatures for each thermocouple value.
Temperature values from all thermocouples are converted to Fahrenheit and
transferred to $SBINOUT using a DAPL expression.

82 Further Real-Time Processing

This technique can be expanded to process more thermocouples by adding more input
channel pipes to the BAVERAGE command.

Note that all thermocouples in this example are the same type. One THERMO command
is needed for each thermocouple type. More thermocouple types can be processed by
adding more THERMO commands.

Sensing Reference Temperature

Data Acquisition Processor termination boards are available with reference
temperature sensing circuits. A reference temperature circuit is used to measure the
temperature of the termination board. Since the cold junction temperature is the same
for all thermocouples connected to a termination board, only one reference
temperature circuit is needed for any number of thermocouples.

The reference temperature sensing device on an Analog Termination Board is a
thermistor. The reference temperature sensing device on a DAP 800 termination board
and a DAP 1216a and DAP 2416a termination board is a solid state integrated circuit.
The following two sections describe how to measure reference temperature with either
type of temperature sensing device.

For the Analog Termination Board, the reference temperature circuit generates a
temperature dependent differential voltage which is connected to differential input D4
of the termination board. The Data Acquisition Processor samples this voltage and the
resultant information is used in the THERMO command for cold junction compensation.

Note: When the cold junction compensation circuit is installed, no other inputs
should be connected to the S8 and S9 terminals of the termination board, as they are
connected to the cold junction compensation circuit.

The following command list illustrates how cold junction compensation is used with
an Analog Termination Board and a Data Acquisition Processor with an input range of
+/- 5 volts. An example for a DAP 800, DAP 1216a, or DAP 2416a is provided later
in this chapter.

Further Real-Time Processing 83

RESET

PIPES P1,P2,P3,P4,P5,P6

VECTOR X=(-5000, -4000, -3000, -2000, -1000,
0, 1000, 2000, 3000, 4000, 5000)

VECTOR Y=(1086, 1378, 1663, 1943, 2221, 2500,
2783, 3071, 3368, 3678, 4004)

VARIABLES GRND, REF

IDEF A 3
SET IPIPEO D4
SET IPIPEL G 100
SET IPIPE2 SO 100
TIME 2500
END

PDEF B
AVERAGE (IPO, 100, P1)
AVERAGE (IP1, 100, P2)
AVERAGE (IP2, 100, P3)
PVALUE (P2, GRND)
P4 = P1 * 5000 / 32767
INTERP (P4, X, Y, P5)
P6 = P5 / 10
PVALUE (P6, REF)
THERMO (P3, 2, 5000, 32767, GRND, $BINOUT, REF)
END

START A, B

Figure 21 illustrates this application.

The vectors X and Y are used with the INTERP command and a DAPL expression to
convert the nonlinear voltage output from the reference temperature circuit to units of
tenths of degrees Celsius. This temperature is used as the cold junction reference
temperature in the THERMO command. The values in vectors X and Y were taken from
the data sheets for the thermistor.

If the Data Acquisition Processor is set up for a +/- 10 volt input range, this command
list needs to be modified. Instead of 5000 in both the THERMO command and the
DAPL expression that computes P4, 10000 is the correct number. This change
provides the correct voltage scaling ratios for +/- 10 volt input range.

Note: When the cold junction compensation circuit is installed, no other inputs
should be connected to the temperature reference input terminal of the termination
board, as it is connected to the cold junction compensation circuit.

84 Further Real-Time Processing

(=G0
(3O

AVERAGE

AVERAGE AVERAGE

—(2 O

—(3 O
2 O

P1 * 5000
/32767

PVALUE

(2 O

INTERP

(3 O

P5/10

(3 O

PVALUE

O

(O

GRND

GRND REF
THERMO
$BINOUT

O

Further Real-Time Processing

Analog input pins

Pipes

Tasks

Pipes

Tasks

Pipe and
Variables

Task

Pipes and
Variables

Tasks

Pipes

Task

Host

Figure 21. Thermocouple Cold Junction Compensation

85

For a DAP 800, DAP 1216a, and DAP 2416a, the reference temperature circuit
generates a linear temperature dependent voltage. The reference temperature circuit is
connected to single-ended input S7 of the DAP 800 termination Board, and S8 of the
DAP 1216a and DAP 2416a termination board. The Data Acquisition Processor
samples this voltage and the resultant information is used in the THERMO command for
cold junction compensation.

The following command list illustrates how cold junction compensation is used with a
DAP 800 input range of +/- 5 volts.

Note: For a DAP 1216a or DAP 2416a, change IPIPEO to use S8 instead of S7.

RESET

PIPES P1,P2,P3,P4

VARIABLES GRND, REF

IDEF A 3
SET IPIPEO S7
SET IPIPEL G 100
SET IPIPE2 SO 100
TIME 2500
END

PDEF B
AVERAGE (1PO, 100, P1)
AVERAGE (IP1, 100, P2)
AVERAGE (1P2, 100, P3)
PVALUE (P2, GRND)
P4 = P1 * 5000 / 32767
PVALUE (P4, REF)
THERMO (P3, 2, 5000, 32767, GRND, $BINOUT, REF)
END

START A, B

The voltage generated by the reference temperature circuit is converted to units of
tenths of degrees Celsius with a DAPL expression. The THERMO command uses the
resulting temperature value to perform cold junction compensation.

If the Data Acquisition Processor is set up for a +/- 10 volt input range, the previous
DAPL command list needs to be modified. Instead of 5000 in both the THERMO task
definition command and the DAPL expression defining the task which computes pipe
P4, a value of 10,000 should be used. This change provides the correct voltage scaling
ratios for +/- 10 volt input range.

86 Further Real-Time Processing

Application 30 — Interpolation

Mathematical functions not provided in DAPL can be implemented with INTERP
tasks. This application uses INTERP to provide a scaled fourth root function. Two
vectors are defined, with the values in VECY equal to 1000 times the fourth roots of the
values in VECX. INTERP uses these vectors for interpolation to provide a close
approximation to the 4th root of any integer number from 0 to 32767. See Figure 22.

RESET
VECTOR VECX = (0,1,16,81,256,1296,4096,
10000,20736,32767)
VECTOR VECY = (0,1000,2000,3000,4000,6000,8000,
10000,12000,13454)
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
INTERP (IPO, VECX, VECY, $BINOUT)
END
START A, B

This DAPL listing defines vector VECX with 11 values from 0 to 32767. Vector VECY
is defined with 11 values that correspond to the 1000 times the fourth roots of the
values in VECX. Note that the values in each vector do not need to be evenly spaced.

For each sample value in input channel pipe 0, INTERP searches for the nearest values
in VECX, interpolates between the corresponding values of VECY, and places the result
in $BINOUT.

Further Real-Time Processing 87

88

© T

INTERP

Ej $BINOUT

()

Analog input pin

Channel pipe

Task

Pipe

Host

Figure 22. Exponential Calculation with INTERP

Further Real-Time Processing

Application 31 — Autoranging

This application demonstrates how to use the AUTORANGE command to increase the
dynamic range of the Data Acquisition Processor. With autoranging, a Data
Acquisition Processor configured for a -5 to +5 volt input range can resolve voltages
as large as 5 volts and as small as 24.4 microvolts.

The following command list demonstrates autoranging. This application is illustrated
in Figure 23.

RESET
EDIT $BINOUT WIDTH=LONG
PIPES P1,P2,P3,P4,P5,P6
IDEF A 6
SET IPIPEO DO 1
SET IPIPE1 DO 10
SET IPIPE2 DO 100
SET IPIPE3 G 1
SET IPIPE4 G 10
SET IPIPE5 G 100
TIME 1000
END
PDEF B
AVERAGE (IPO, 16, P1)
AVERAGE (IP1, 16, P2)
AVERAGE (IP2, 16, P3)
AVERAGE (IP3, 16, P4)
AVERAGE (IP4, 16, P5)
AVERAGE (IP5, 16, P6)
AUTORANGE (6,P1,P2,P3,P4,P5,P6,$BINOUT,16)
END
START A, B

A differential pin pair and six consecutive input channel pipes must be devoted to
reading data for an AUTORANGE task. The differential pin pair is connected to the
source of the input data. The first three input channel pipes read the input differential
pin pair at gains of 1, 10, and 100. The next three input channel pipes read an internal
ground reference at the same gains. This lets the software provide offset correction at
each gain.

Further Real-Time Processing 89

G

AVERAGE 16

AVERAGE 16

AVERAGE 16

AVERAGE 16

AVERAGE 16

AVERAGE 16

—(2 0

—(3

90

1l

—(3 -

L

AVERAGE

§

$BINOUT

()

Figure 23. Autoranging

Further Real-Time Processing

An AUTORANGE task normally receives data from an input channel pipe or an
AVERAGE task. The dynamic range possible with autoranging makes the analog input
sensitive to noise. To minimize noise effects, it is best to average the input before an
AUTORANGE task. In the above application, the AUTORANGE task reads averaged data
from pipes P1 through P6.

AUTORANGE interpolates three adjacent readings to form an extended range value. The
AUTORANGE command compensates for interpolation errors caused by the different
sampling times at the various gains. Averaging the input data allows the AUTORANGE
command to reduce errors resulting from timing skew.

The autoranging operation generates a 23-bit integer. This is placed into $BINOUT,
which was modified to a long pie by the EDIT task. The extended range integer
resolves voltages as small as 24.4 microvolts on the -5 to +5 volt input range.

It is important to remember that AUTORANGE does not provide greater accuracy than
the analog-to-digital converter can provide. AUTORANGE provides extended dynamic
range by choosing the most precise value from one of three gains, multiplying the
value by the gain, and placing the result in a long pipe. The long values still have the
same relative accuracy as the analog-to-digital converter.

Further Real-Time Processing 91

Application 32 — Identifying Maxima and Minima

The following application, illustrated in Figure 24, scans an input channel pipe for
maxima and minima and prints the distances between successive maxima and the
distances between successive minima:

RESET
PIPES P1,P2,P3 LONG,P4 LONG
PIPES P5 LONG,P6 LONG
TRIGGERS T1,T2
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
AVERAGE (I1PO,16,P1)
AVERAGE (IPO,16,P2)
PEAK (P1, 0, T1)
PEAK (P2, 1, T2)
TSTAMP (T1, P3)
TSTAMP (T2, P4)
DELTA (P3, P5)
DELTA (P4, P6)
MERGEF (P5, P6, $BINOUT)
END
START A, B

To identify which data values are minima and which data values are maxima, the
MERGEF commands is used in the above example. MERGEF includes an identifying
flag with each data value; the flag shows which pipe the data value is from.

When using DAPview, two FORMAT tasks should be used in place of the MERGEF
task shown above. The first FORMAT should print the data from pipe P5 and the
second FORMAT should print the data from P6. DAPview does not accept long data
values sent using MERGEF.

92 Further Real-Time Processing

SO

AVERAGE 16 AVERAGE 16

a

PEAK 8 PEAK 8
1 1
T1 T2
N2 N2
TSTAMP TSTAMP

@
g

DELTA DELTA

MERGEF

@$BINOUT

O)

Figure 24. Using Prefixes to Identify Maxima and Minima

Further Real-Time Processing

Application 33 — Almost Simultaneous Sampling

Some applications require sampling two or more analog inputs simultaneously.
Although the Data Acquisition Processor does not support simultaneous sampling
without external hardware, almost-simultaneous sampling can be implemented in
software. With the following command list, the Data Acquisition Processor samples
two inputs almost simultaneously at a rate of 1000 Hz.

RESET

IDEF A 100
SET IPO SO
SET IP1 S1
TIME 10
END

In input procedure A, 100 input channel pipes are specified. This causes the Data
Acquisition Processor to sample two real input pins, SO and S1, and 98 dummy input
pins. Because of the input procedure declaration, the Data Acquisition Processor
samples input pins SO and S1 ten microseconds apart. The timing skew between input
pins is only 1% of the effective sampling time.

Note: Dummy input channel pipes 2 through 99 do not cause input overflow since
DAPL automatically purges data from input channel pipes that are not used by any
tasks.

For true simultaneous sampling, Microstar Laboratories offers simultaneous sampling
boards with either four or sixteen sample and hold amplifiers.

94 Further Real-Time Processing

Application 34 — Mixing Fast Inputs and Slow Inputs

Some applications require sampling several input pins rapidly and several input pins
slowly. Since the sampling time of an input procedure applies to all input pins that are
defined, different sampling rates must be generated during data processing. The
simplest way to provide different sampling speeds is to sample all pins at the speed of
the fastest input pin and use SKIP commands to reduce the data rates of the slower
input channel pipes.

For example, suppose an application requires sampling one input pin at 10,000
samples per second and four other input pins at 2,000 samples per second. The
following DAPL commands accomplish this:

RESET
PIPES P1,P2,P3,P4,P5,P6,P7,P8,P9
IDEF A 5
SET IPO SO
SET IP1 S1
SET IP2 S2
SET IP3 S3
SET IP4 S4
TIME 20
END
PDEF B
SKIP (IP1, O, 1, 4, P1)
SKIP (IP2, 0, 1, 4, P2)
SKIP (IP3, 0, 1, 4, P3)

SKIP (IP4, 0, 1, 4, P4)
HIGH (IPO, 100, P5)
HIGH (P1, 100, P6)

HIGH (P2, 100, P7)

HIGH (P3, 100, P8)

HIGH (P4, 100, P9)

END

The input procedure samples each input pin at the rate of 10,000 samples per second.
The four SKIP tasks, however, specify that only one out of every five samples is to be
transferred its output pipe. This effectively reduces the sampling rate of the last four
input pins to 2,000 samples per second. Input pin SO is sampled at 10,000 samples per
second and no reduction is needed. In this application, HIGH commands illustrate
typical processing.

Further Real-Time Processing 95

This input procedure is inefficient, however, since the Data Acquisition Processor
must acquire and process data at a rate of 50,000 samples per second, even though it
ignores most of the data. A more efficient alternative is to use a channel pipe list,
which is a list of input channel pipe numbers in parentheses. A channel pipe list
specifies a list of input channel pipes from which an input task reads data, as
illustrated by the first HIGH task definition below. See Figure 25 for a diagram of this
application.

RESET
PIPE P1,P2,P3,P4,P5
IDEF A 10
SET IPO SO
SET IP1 S1
SET IP2 SO
SET IP3 S2
SET IP4 SO
SET IP5 S3
SET IP6 SO
SET IP7 sS4
SET IP8 SO
SET IP9 S5
TIME 50
END
PDEF B
HIGH (IP(0,2,4,6,8), 100, P1)
HIGH (IP1, 100, P2)
HIGH (IP3, 100, P3)
HIGH (IP5, 100, P4)
HIGH (IP7, 100, P5)
END

This input procedure samples ten input pins at a rate of 2,000 samples per second per
input pin. The input pin sampling sequence is:

so, Ss1, so, s2, sO, S3, SO, S4, SO, S5, SO, S1,....

Since the input procedure samples each input pin at 2,000 samples per second, the
slow input channel pipes can be read directly by tasks. The SET commands in the
input procedure set the input channel pipes so that the fast input pin is sampled at
every second sample interval. The first HIGH task then reads from five of the input
channel pipes to achieve an aggregate data rate of 10,000 samples per second.

Notice that the sampling rate of this input procedure is 2.5 times slower than the
sampling rate in the previous input procedure, but with the same final data rates. This

96 Further Real-Time Processing

allows more time for processing because the processor is not involved in reducing the

data rate.
S0 s1 S0 S0 S3 S0 s4 S0
O O O D
P P P
G I G
HIGH HIGH HIGH HIGH HIGH
O O
P1 P2 E P4 E

Figure 25. Mixing Fast Inputs and Slow Inputs

Further Real-Time Processing

97

Application 35 — Multiple Rate Data Transfer

In some applications it is desirable to simultaneously transfer fast and slow input
channel pipe data to a PC. A MERGEF task can merge pipes asynchronously.

This application uses MERGEF to combine pipes with different data rates into one pipe.
MERGEF places an identifying flag before each value to identify the source of each
data value. See Figure 26.

RESET

PIPES P1,P2,P3

IDEF A 4
SET IPO SO
SET IP1 S1
SET IP2 S2
TIME 250
END

PDEF B
AVERAGE (I1PO, 10, P1)
AVERAGE (IP1, 20, P2)
AVERAGE (IP2, 50, P3)
MERGEF (P1, P2, P3, $BINOUT)
END

START A, B

This DAPL command list defines three input pins sampled at 1000 samples per
second. Four logical input channel pipes are specified in the input procedure
definition to get the desired sample rate for each input pin. The fourth input channel
pipe is ignored. The first three input channel pipes are averaged with different block
sizes, so the data rates are different for each. The data rates in pipes P1, P2, and P3
are 100, 50, and 20 samples per second, respectively.

98 Further Real-Time Processing

8
e N

4

P P P
0 1 2
AVERAGE AVERAGE AVERAGE
10 10 10
MERGEF
$BINOUT

Figure 26. Multiple Rate Data Transfer

Further Real-Time Processing

Analog input pins

Channel pipes

Tasks

Pipes

Task

Pipe

Host

99

Application 36 — Observing Timing of Rotating Machinery

When combined with a Microstar Laboratories Counter Timer Board, a Data
Acquisition Processor other than the DAP 800 can provide precise time resolution for
repetitive events. This application shows how the combination of a Data Acquisition
Processor and a Counter Timer Board can be used to generate an engine speed profile.
This is typical of a variety of applications involving rotating machinery.

Figure 27 illustrates the hardware configuration for this application. An optical
encoder has a disk which is attached to the engine's flywheel. The disk has two optical
sensors. One passes light through a series of uniformly spaced slits to generate clock
pulses; the other passes light through a single slit to generate a reference pulse. The
output of the first sensor is connected to the external clock input of the Data
Acquisition Processor. In a typical application, the optical encoder might have 256
slits, giving clock pulses every 360/256 = 1.41 degrees. The output of the second
sensor is connected to the hardware trigger of the Data Acquisition Processor to give
absolute positional information.

Note: The optical encoder configuration used in this application also is useful in
many applications involving fast Fourier transforms. In typical applications, the
techniques of this application are combined with the spectral analysis techniques
described in Chapter 8.

The Counter Timer Board is connected to the digital input/output port of the Data
Acquisition Processor. By means of software commands, the Counter Timer Board
can be configured either to count external pulses or to count cycles of its internal
5-MHz clock. With its 5-MHz clock, the Counter Timer Board gives a time resolution
of 200 nanoseconds.

In this application, the Counter Timer Board is configured to count the number of
internal clock cycles which occur between pulses from the optical encoder. At an
engine speed of 600 RPM, for example, there are 1953 cycles of the 5 MHz clock
between pulses of the optical encoder. This means that over the period of one encoder
clock, the Counter Timer Board can resolve speed variations of about 1/1953 = 0.05%
of the engine speed. For greater resolution, the times can be averaged. The following
DAPL listing illustrates a typical engine monitoring application.

100 Further Real-Time Processing

Optical
Encoder

Flywheel
External
Clock
Data Acquisition Processor
External
Trigger
Counter 99
Timer .
Digital In
Board 4
[

Figure 27. Engine Diagnostics Configuration

OUTPORT 0..7 TYPE=0

RESET
PIPES P1, P2
CONST INTERNAL=10
VARIABLE SCALE1=500000 LONG
IDEF A 2
CLOCK EXTERNAL
HTRIGGER ONESHOT
SET IPO CTLO
SET IP1 CTO INTERNAL
TIME 100
END
PDEF B
CTRATE (IP1, P1)
BAVERAGE (P1, 256, 100, P2)
$BINOUT = SCALE1 / P2
END
START A, B

The Counter Timer Board appears to the Data Acquisition Processor as several
input/output ports. Because of this, the OUTPORT command is required for
communication with the Counter Timer Board.

The clock output of the optical encoder is connected to the External Clock Input pin
of the Data Acquisition Processor. The CLOCK EXTERNAL command configures the
Data Acquisition Processor to use its external clock. The TIME command must set the

Further Real-Time Processing 101

internal sampling time smaller than the shortest possible time between pulses of the
flywheel encoder, and it should set the sampling time close to the shortest possible
time between pulses of the flywheel encoder. See the Data Acquisition Processor
hardware manual for more information about selecting the parameter for the TIME
command.

The Data Acquisition Processor should be configured for Channel List Clocking. With
Channel List Clocking, the Data Acquisition Processor reads all the input pins of its
active input procedure each time it receives an external clock input. Channel List
Clocking is a jumper option for the Data Acquisition Processor. See the Data
Acquisition Processor hardware manual for details.

The reference pulse from the optical encoder is connected to the External Trigger pin
on the Data Acquisition Processor. The HTRIGGER ONESHOT command synchronizes
the start of sampling to a pulse at the External Trigger pin, giving absolute positional
information. Sampling continues until the Data Acquisition Processor receives a STOP
command.

Two forms of the SET command are dedicated to the Counter Timer Board. Each
Counter Timer Board has two groups of five counters. Counters 0 through 4 form
group 0, and counters 5 through 9 form group 1. A SET IPIPEx CTLy command sets
up the Counter Timer Board to load all the counters in group 'y' each time the Data
Acquisition Processor reads IPIPEx. A SET IPIPEw CTz command sets up the
Counter Timer Board to read counter z each time the Data Acquisition Processor
reads IPIPEw. If this command is followed by the code 10, the input sample is
clocked by the internal 5 MHz clock; otherwise, it is clocked externally.

Loading a group of counters takes one sample time. The load command for a group

should be set at an input number which is lower than the input numbers for reading the
inputs of the group.

102 Further Real-Time Processing

In this application, the Data Acquisition Processor loads counter group 0 and then
reads counter 0 each time the optical encoder generates a clock pulse. The CTRATE
task definition command sets up an input task which calculates the differences
between adjacent count values in input channel pipe 1 and places the differences in
pipe P1. The speed of the flywheel is calculated easily from the differences.

It may be desirable to reduce the finite sampling time effects by averaging the speeds
at corresponding points in many cycles. A BAVERAGE task in processing procedure B
averages corresponding points in 100 blocks and puts the results in pipe P2. The block
size for the BAVERAGE task is the same as the number of pulses from the flywheel
encoder in a complete cycle of the engine.

Speed is calculated by a DAPL Expression, which places the result in $BINOUT .

Further Real-Time Processing 103

8. Digital Signal Processing

Application 37 — Digital Filtering

Digital filtering provides many advantages over traditional analog filtering. This
application implements a digital bandpass filter which attenuates input frequencies
which are less than 10 Hz or greater than 15 Hz.

Each digital filtering task requires a vector of filter coefficients. This vector can be
generated by the FGEN program.

RESET
VECTOR FV = (-19,83,246,-583,-1131,
1871,2722,-3553,-4217,4586,4586,
-4217,-3553,2722,1871,-1131,-583,
246,83,-19)
IDEF A 1
SET IPIPEO SO
TIME 10000
END
PDEF B
FIRFILTER (IPIPEO, FV, 0,0,0,0,$BINOUT)
END
START A, B

In this command list, the VECTOR command defines a vector which specifies the
frequency response of the filter. The FIRFILTER task filters the data from input
channel pipe 0 and sends the filtered data to $BINOUT.

Note: FIRFILTER is available only in DAPL 2000. For previous versions of
DAPL, use the RFILTER command.

Digital Signal Processing 105

Application 38 — Spectral Analysis

An important data processing operation performed by the Data Acquisition Processor
is spectral analysis — computation of the frequency components of signals. Chapter
17 of the DAPL Manual provides background on spectral analysis using fast Fourier
transforms.

The following commands configure the Data Acquisition Processor to compute fast
Fourier transforms on successive blocks of 256 data values from input channel pipe 0.
This application is illustrated in Figure 28. After computing the transform of each
block of data, the Data Acquisition Processor prints the amplitude spectrum of the
data.

RESET
IDEF A 1
SET IPIPEO SO
TIME 10000
END
PDEF B
FFT (5. 8, 0, IPO, $BINOUT)
END
START A, B

The FFT task definition command is all that the Data Acquisition Processor requires
to compute a fast Fourier transform. See Chapter 17 of the DAPL Manual for an
interpretation of the fast Fourier transform.

DAPview Note: The recommended graphing options for spectral data are
Accumulate X option off, Number of Points equal to <fft_size>/2, and X Unit
Scaling equal to <sampling_frequency>/<fft_size>. For example, the previous
application should be configured with Number of Points equal to 128 and X Unit
Scal ing equal to 100/256 = 0.391.

The fast Fourier transform requires the input sampling speed to be at least twice the
highest frequency in the input signal. This may require very fast sampling of an input
pin. Fast sampling will, however, overload the PC with transform data. A SKIP
command provides options for extracting blocks of data from an input channel pipe
and ignoring fractions of each block:

106 Digital Signal Processing

Analog input pin

ez O—8

Channel pipe
EFT Task
@ $BINOUT Pipe
D Host

PC

Figure 28. Spectral Analysis

Digital Signal Processing 107

IDEF A 1
SET IPO SO
TIME 100
END
PDEF B
SKIP (1PO, O, 256, 768, P1l)
END

The SKIP task transfers a block of 256 data values and then ignores 768 data values
— three blocks of 256 data values. This task reduces the data rate to FFT by a factor
of four without slowing down the acquisition rate.

Some applications of spectral analysis require only the predominant input frequency
and the size of the component at that frequency. A FINDMAX task can be used to find
the dominant frequency.

RESET

PIPES P1,P2,P3

IDEF A 1
SET IPO SO
TIME 10000
END

PDEF B
FFT (5, 8, 0, IPO, P1)
FINDMAX (P1,128,INSIDE,1,127,P2,P3)
MERGE (P2, P3, $BINOUT)
END

START A, B

The FINDMAX command allows optional restriction of searching to a portion of each
block of data. In the FINDMAX task definition command above, the region
(INSIDE,1,127) specifies that the FINDMAX task ignores the first frequency
component. This component represents the DC offset of the input signal.

The MERGE command sends data to $BINOUT, and the PC displays the amplitude and
the position of the dominant frequency component.

108 Digital Signal Processing

Application 39 — Calculating Transfer Functions

A Data Acquisition Processor with an on-board DSP chip is well-suited for frequency
response testing. A device is driven by an input signal, and the input and output
signals are digitized. The transfer function of the device under test is defined as the
frequency domain ratio of the output to the input.

A RANDOM task can be used with an output procedure to drive a device under test with
a broadband noise signal. Together with the techniques described in this application,
this makes the Data Acquisition Processor into a complete transfer function tester. The
output of the RANDOM task should be band-limited by a DAPL lowpass filter and a
hardware anti-aliasing filter. Details of this setup are not included in this application.

The straightforward approach to calculating the transfer function is to calculate the
fast Fourier transforms of the input signal and the output signal, and then to form the
ratio of the output to the input at each frequency. The disadvantage of this approach is
that it does not behave well under averaging, so it is sensitive to noise at those
frequencies where the input signal does not have much power. An alternative involves
calculating the crosspower spectrum and the autopower spectrum. With this approach,
averaging is well behaved. The two command lists in this application show both
approaches to calculating the transfer function.

If input and output are not sampled simultaneously, the calculated transfer function
shows a phase error which is proportional to frequency. This error can be removed by
a computation, or can be eliminated by using a Simultaneous Sampling Board. The
command lists in this application use a Simultaneous Sampling Board.

The following command list calculates the transfer function directly using fast Fourier
transforms.

Digital Signal Processing 109

RESET
PIPES P1,P2,P3,P4,P5,P6,P7
IDEF A 3
SET IPO S256
SET IP1 SO
SET IP2 S1
TIME 1000
END
PDEF B
FFT (0, 10, O, IP1, P4, P5)
FFT (0, 10, 0, IP2, P6, P7)
TFUNCTIONL1 (P4, P5, P6, P7, 100, P1, P2)
P3 = (P2 * 180) / 32767
MERGE (P1, P3, $BINOUT)
END
START A,B

In this application, single-ended inputs SO and S1 are connected to the input and the
output of the device under test, respectively. Inputs pins SO and S1 are sampled
simultaneously. Input channel pipe 0 is a dummy channel pipe which sets up the
Simultaneous Sampling Board for sampling. See the Hardware Manual for details.

The fast Fourier transforms of the input and the output are calculated by two FFT
tasks. These are combined in the TFUNCTION1 task to give the transfer function. The
DAPL expression converts the phase output of TFUNCTION1 to degrees. Finally, the
MERGE task sends the results back to the host PC through $BINOUT.

The following command list calculates the transfer function using crosspower
spectrum:

110 Digital Signal Processing

RESET
CONST NAVE=16
PIPES P1 LONG,P2 LONG,P3 LONG
PIPES P4 LONG,P5 LONG,P6 LONG,P7,P8,P9
IDEF A 3
SET IPO S256
SET IP1 SO
SET IP2 S1
TIME 1000
END
PDEF B
CROSSPOWER (IP1, IP2, 0, 10, O, P1, P2, P3)
BAVERAGE (P1, 512, NAVE, P4)
BAVERAGE (P2, 512, NAVE, P5)
BAVERAGE (P3, 512, NAVE, P6)
TFUNCTION2 (P6, P4, P5, 100, P7, P8)
P9 = (P8 * 180) / 32767
MERGE (P7, P9, $BINOUT)
END
START A, B

This command list uses a CROSSPOWER task in place of two FFT tasks. This allows
block averaging, as performed by the three BAVERAGE tasks, before calculation of the
transfer function. A TFUNCTION2 task must be used with the data from the
CROSSPOWER task.

Digital Signal Processing 111

9. Process Control

Application 40 — Alarms

The following application sets an alarm bit on the digital output port when the value
of differential input channel pipe 0 exceeds 999. Low latency is used to minimize the
delay from input to alarm. See Figure 29 for a diagram of this application.

RESET
OPTION SCHEDULING=FIXED, QUANTUM=200, BUFFERING=OFF
IDEF A 1
SET IPO DO
TIME 1000
END
PDEF B
ALARM (IPO, INSIDE,1000,32767, 7, 0)
END
START A, B

The ALARM command sets digital output bit 7 if the value in input channel pipe 0 is in
the range 1000...32767.

This application typically responds to an alarm condition within 2 milliseconds.

Note: OPTION SCHEDUL ING=FIXED, QUANTUM=200, BUFFERING=0FF is a DAPL
2000 command. For DAPL 4.x, use OPTION LLATENCY=ON.

Process Control 113

U Analog input pin
P Channel pipe
0
ALARM Task
Bit7 Digital output

Figure 29. Rapid Response to Alarm Conditions

114 Process Control

Application 41 — PID Control

Process control applications require feedback from input to output. A chemical
reactor, for example, may need a temperature controller which maintains the reactor's
internal temperature at a specified setpoint. One simple approach to this sort of
temperature control is to use the DAPL ALARM command to turn a heater on when the
temperature drops below the setpoint. This approach, however, can result in
temperature overshoot.

A common control algorithm is the proportional integral derivative (PID) algorithm.
A PID control loop drives an analog input toward a specified value, known as a
setpoint, by generating an output signal which corrects for differences between the
analog input and the setpoint. The PID algorithm combines three error signals which
are proportional to the observed differences, their integrals, and their derivatives. By
careful selection of the proportionality constants, it is possible to take system time lag
and overshoot into consideration when defining a P1D task.

One Data Acquisition Processor can control a large number of PID loops, so the Data
Acquisition Processor can be an inexpensive PID controller. Sampling rates and
acceptable latencies determine the number of PID loops one Data Acquisition
Processor can control.

The following commands set up a typical PID application:

RESET
PIPES P1,P2
VARIABLES SETP=1000, P=-100, 1=-50, D=-50
IDEF A 1
SET I1PO SO 10
TIME 10000
END
PDEF B
AVERAGE (1PO, 100, P1)
PID (P1, SETP, P,1000, 1,1000, D,1000, P2)
DACOUT (P2, 0)
END
START A, B

The PID task reads input data from pipe P1 and places correction data in pipe P2. If
suitable parameters are selected, the P1D task maintains the input data at the value of

Process Control 115

variable SETP. See the DAPL Manual for more information about PID and its
parameters.

Finally, the DACOUT task reads the output of the P1D task and sends the data to analog
output #0.

A LET command can be used to change the values of the SETP, P, 1, or D variables
at any time during execution of this application.

A low-latency mode should be used to reduce the latency between input and control
output. The following commands set up a PID loop for minimum delay:

RESET
OPTIONS SCHEDULING=FIXED, QUANTUM=200, BUFFERING=OFF
PIPES P1
VARIABLES SETP=1000, P=-100, 1=-50, D=-50
IDEF A 1
SET IPO SO
TIME 10000
END
PDEF B
PID (IPO, SETP, P,1000, 1,1000, D,1000, P1)
DACOUT (P1,0)
END
START A, B

This DAPL command list configures the Data Acquisition Processor for low latency
with the OPTIONS SCHEDUL ING=F I XED, QUANTUM=200, BUFFER ING=0FF command.
Low latency mode limits time delays to approximately 1 ms for each task, or 0.2 ms
for a DAP 3000a or DAP 3200a. In this case the typical time between input and
output is 2 ms, or 0.4 ms for a DAP 3000a or DAP 3200a.

Note: OPTIONS settings are different between DAPL 2000 and previous versions of
DAPL. Check the manual for the relevant version of DAPL for correct OPTIONS
settings. For example, in DAPL 4.4, use OPTIONS LLATENCY = ON instead of the
above syntax.

116 Process Control

Application 42 — Pulse Width Modulation

Some applications require only digital (on/off) control, rather than analog control. A
heater, for example, may be cycled on and off with a variable duty cycle.

The PwM command converts continuous control data into variable width control
pulses; PwWM stands for Pulse Width Modulation. The following commands assume that
the heater in the previous application is controlled by bit 0 of the binary output port.

RESET
PIPES P1,P2
VARIABLES SETP=1000, P=-100, 1=-50, D=-50
IDEF A 1
SET IPIPEO SO 10
TIME 10000
END
PDEF B
PID (IPIPEO, SETP, P,1000, 1,1000, D,1000, P1)
PWM (P1, -5000, 5000, 10, O, O, OPIPEO)
END
ODEFINE C 1
SET OPIPEO B
TIME 10000
END
START A, B, C

For the DAP 32003, the output procedure should include the following command to
ensure that enough values are buffered prior to starting the output procedure, which
avoids output underflow:

OUTPUTWAIT 50

The PWM task reads 10 input values from pipe P1 and sends 10 output values to output
channel pipe 0. PWM turns bit O on for zero to ten of the output values, depending on
the average of the input data. If the average is less than -5000, bit O is turned off for
all ten output values. If the average is above +5000 bit 0 is turned on for all ten output
values. If the average is between -5000 and +5000, bit 0 is turned on for between zero
and ten values. The output procedure sends PWM data to the digital output port.

The output procedure TIME command defines an update time of 10 milliseconds. The
PwM command provides 10 values for each interval to cycle the heater on and off at

Process Control 117

100 millisecond intervals. Within each interval, the output bit is high for between zero
and 100 milliseconds, with 10 millisecond resolution.

Heater Controller

The following DAPL commands build on the previous example to implement a
complete heater control application with a thermocouple for sensing temperature.

RESET
PIPES PO,P1,P2
VARIABLES SETP=450, P=-100, I=-50, D=-50
VARIABLES REF=200, GRND
IDEF A 2
SET IPO G 100
SET IP1 SO 100
TIME 5000
END
PDEF B
AVERAGE (1PO, 100, PO)
PVALUE (PO, GRND)
THERMO (IP1, 1, 5000, 32767, GRND, P1, REF)
PID (P1, SETP, P,1000, 1,1000, D,1000, P2)
PWM (P2, -5000, 5000, 10, O, O, OPO)
END
ODEFINE C 1
SET OPO B
TIME 10000
END
START A, B, C

For the DAP 32003, the output procedure should include the following command to
ensure that enough values are buffered prior to starting the output procedure, which
avoids output underflow:

OUTPUTWAIT 50

118 Process Control

In this example, a THERMO command converts thermocouple input voltages to tenths
of degrees Celsius. A PID command calculates a control signal from the temperature
input. Variable SETP sets the control temperature to 45.0 degrees Celsius. A PWM
command reads the control signal from the P1D command and sends a pulse sequence
to an output procedure.

The output procedure TIME command defines an update time of 10 milliseconds. The
PwM command provides 10 values for each interval to cycle the heater on and off at
100 millisecond intervals. Within each interval, the output bit is high for between zero
and 100 milliseconds, with 10 millisecond resolution.

Process Control 119

10. Communications

Application 43 — Text Communication

There are two options for sending data from a Data Acquisition Processor to the PC:
binary or text transfer. Applications requiring high communication speed can transfer
data in binary format. This improves efficiency by eliminating the conversions
between binary format and text format. Binary transfer, however, limits data
formatting options and may require more complex processing in the PC.

Tasks defined by DAPL PRINT and FORMAT commands convert binary data into
formatted text and then transmit the text to the PC. Text supports many data
formatting options and provides the most flexible data transmission. However, the
conversions to and from text require extra processing on both the Data Acquisition
Processor and its host PC.

The following command list configures the Data Acquisition Processor to transfer all
data to the PC as text:

RESET

IDEF A 3
SET IPIPEO SO
SET IPIPE1 S1
SET IPIPE2 S2
TIME 10000
END

PDEF B
PRINT
END

START A, B

The PRINT task repeatedly reads one value from each of the three input channel pipes
and sends the values to the PC as a line of text. The PRINT command continues until
sampling is stopped.

The FORMAT task also sends text data to the PC. FORMAT is a powerful command for

formatting data from processing procedures. Below is a simple example in which the
FORMAT command receives data from DELTA and sends the data to the PC:

Communications 121

RESET
PIPE PO
IDEF A 1
SET IPO SO
TIME 100
END
PDEF B
DELTA (I1PO, PO)
FORMAT (PO)
END
START A, B

The FORMAT command can accept up to 32 parameters. Some examples of formatting

options are: printing line numbers, including a decimal specification, and printing the
results of variables. See the DAPL manual for more details.

122 Communications

Application 44 — Text Communication from Several Tasks

When a PC receives data from more than one task, a FORMAT task is a good way to
distinguish which data value came from which task. Multiple values can be printed
with a FORMAT task, and each value will print on one line in the order listed.

RESET
PIPES P1, P2
IDEF A 2
SET IPO SO
SET IP1 S1
TIME 100
END
PDEF B
AVERAGE (1PO, 100, P1)
AVERAGE (IP1, 100, P2)
FORMAT (P1, P2)
END
START A, B

In the above example, FORMAT reads data values sequentially from pipes P1 and P2

and sends the values to the PC. The data rates into all input pipes must be the same for
this FORMAT task to work.

Communications 123

Using two FORMAT tasks allows data to be sent to the PC from two tasks with different
data rates. Each value is printed on a separate line. You can print an identifying
prefix in front of each format line to identify which task each value is from.

124

RESET
PIPES P1,P2
TRIGGERS T1,T2
IDEF A 2
SET 1PO SO
SET IP1 S1
TIME 100
END
PDEF B
DLIMIT (IPO, INSIDE, 100, 200, T1)
DLIMIT (IP1, INSIDE, 100, 200, T2)
TSTAMP (T1, P1)
TSTAMP (T2, P2)
FORMAT (*“One: *, P1)
FORMAT (“Two: *, P2)
END
START A, B

Communications

Application 45 — Simultaneous Transfer of Text Data and
Binary Data

This application illustrates simultaneous binary and text data transfer to a PC. A
binary com pipe is used for data which must be transferred at a high data rate, and a
text com pipe is used for data which will be transferred at a low data rate.

Software triggering is used in this application to transfer a large block of data to a PC
whenever an input value exceeds 10,000. Because the blocks are large, they are
transferred through a binary com pipe. A TSTAMP task returns the sample count of
each software trigger. Because there are relatively few sample count values, the results
are transferred to the PC through a text com pipe. This application is illustrated in
Figure 30.

RESET
PIPE P1 LONG
TRIGGER T1 2
IDEF A 5
SET IPO SO
SET IP1 S1
SET IP2 S2
SET IP3 S3
SET IP4 S4
TIME 10
END
PDEF B
LIMIT (IPO, INSIDE,10000,32767,T1, INSIDE, 10000,32767)
WAIT (IP(0,1,2,3,4),T1,100,400,$BINOUT)
TSTAMP (T1, P1)
FORMAT (P1)
END
START A, B

This DAPL command list selects five input channel pipes for sampling at 20 KHz. A
LIMIT task scans input channel pipe 0 and sets trigger T1 when a value above 10,000
is detected. Hysteresis is used to prevent generation of additional triggers until after a
value below 10,000 is detected. A valid trigger in T1 causes a WAIT task to transfer
100 pre-trigger values and 400 post-trigger values from five input channel pipes to the
binary com pipe $BINOUT.

Communications 125

126

SO

T

LIMIT

S1 S2 S3

INSIDE
10000, 32767

TSTAMP

FORMAT

WAIT

$BINOUT

Figure 30. Text and Binary Transfer

1
)

Analog input pins

Channel pipes

Tasks

Trigger

Task

Pipes

Task

Host

Communications

Each time trigger T1 is asserted, a TSTAMP task places the sample count of the trigger
event into long pipe P1. A FORMAT task transfers the data in P1 to the PC through a
text com pipe.

DAPview Note: The recommended DAPview data settings for this application are
Screen Data Select menu to Text and the logging Data Select menu to
Binary. The graphics Data Select menu should be set to Text, unless real-time
graphics are required. DAPview Plus applications should turn autoconfiguration off,
to prevent automatic resetting of above options.

A high level language such as Pascal or BASIC also could be used to read the data

from both text and binary communications pipes. The high level language should
select com pipe 0 to read text data and com pipe 1 to read binary data.

Communications 127

Application 46 — Sending Data to a Data Acquisition
Processor

A Data Acquisition Processor supports high-speed binary data transfer to and from a
host PC. Receiving data from the PC is similar to sending data to the PC. This
application provides two examples illustrating PC to Data Acquisition Processor
binary transfer. The first example shows how to transfer previously logged data to a
Data Acquisition Processor for analog output. The second example illustrates the use
of a Data Acquisition Processor for postprocessing.

A Data Acquisition Processor reads data from the PC through the $BININ
communication pipe. Any task can use $BININ as its input pipe. The following DAPL
commands illustrate reading data from the PC and sending the data to output channel
pipe 0.

RESET
PDEF A
COPY ($BININ, OPIPEO)
END
ODEF B 1
SET OPIPEO AO
TIME 10000
END
START A, B

A COPY command reads data from $BININ and sends the data to output channel
pipe 0. An output procedure defines output channel pipe O for analog output on AO at
100 Hz.

DAPview Plus can transfer data from a file to the Data Acquisition Processor using
the Data file option in the Control menu. Programs created with programming
languages also can transfer data to a Data Acquisition Processor.

A Data Acquisition Processor also can process data from the PC and send the results
back to the PC. The following example illustrates how a Data Acquisition Processor
with an on-board DSP chip accelerates FFT processing of PC data.

RESET

PDEF A
FFT (5, 8, 1, $BININ, $BINOUT)
END

START A

128 Communications

An FFT command reads data from $BININ, processes the data, and sends the data
back to the PC through $BINOUT.

Note that the DAP 800 has fast data transfer only while sending data to the PC. When
receiving data from the PC, the maximum data rate is limited to about 5 KHz. For this
reason, it is best to use a different model for applications that require high-speed
transfer from a PC to a Data Acquisition Processor.

Communications 129

Application 47 — Synchronizing Several Data Acquisition
Processors

Several Data Acquisition Processors can be used in one PC to provide performance
that would otherwise be impossible. This application uses two Data Acquisition
Processors to provide an aggregate sample rate of 400 KHz. In addition, two Data
Acquisition Processors provide twice the processing power of one board. In this
application, one input on each board is sampled at 200 KHz for an aggregate sample
rate of 400 KHz. Each Data Acquisition Processor performs FFT processing on a
reduced set of data from each input channel pipe.

To achieve simultaneous synchronized sampling, one Data Acquisition Processor
must be configured as a master and the other Data Acquisition Processor must be
configured as a slave. See the Data Acquisition Processor hardware manual for
instructions on installing several synchronous Data Acquisition Processors.

When several Data Acquisition Processors are installed in one PC, the Data
Acquisition Processors communicate with the PC through different com pipes. In this
application, the slave Data Acquisition Processor communicates with the PC through
com pipes 0 and 1, and the master Data Acquisition Processor communicates with the
PC through com pipes 2 and 3.

A diagram of this application is provided in Figure 31.

130 Communications

Communications

SLAVE MASTER

¢ -G08
A GIcm=T

=0
GHC

$BINOUT $BINOUT
COMPIPE 1 COMPIPE 3

1 O
)

Figure 31. Synchronous Data Acquisition Processors

131

The following DAPL command list configures the master unit.

RESET
PIPE P1
IDEF AMASTER 1
MASTER
SET 1PO SO
TIME 5
END
PDEF BMASTER
SKIP (IPO, 0, 1024, 9216, P1)
FFT (5, 10, 2, P1, $BINOUT)
END

The following DAPL command list configures the slave unit.

RESET
PIPE P1
IDEF ASLAVE 1
SLAVE
SET IPO SO
TIME 5
END
PDEF BSLAVE
SKIP (1PO, 0, 1024, 9216, P1)
FFT (5. 10, 2, P1, $BINOUT)
END

The DAPL command list for the master unit defines input procedure AMASTER to read
from a single-ended analog input at 200,000 samples per second. The MASTER
command defines the Data Acquisition Processor to be the master that supplies the
sampling clock for all of the slave Data Acquisition Processors. A SKIP command
transfers one block of 1024 values out of every ten blocks of input data to an FFT
command. This reduces the data rate for the FFT but provides high-speed data within
blocks. For Data Acquisition Processors without on-board DSP chips, further data
reduction is required to compensate for the FFT processing speed. The FFT task
performs high-speed FFT processing and the results are sent to the PC through the

$BINOUT com pipe.

132

Communications

In this application, the DAPL commands for the slave are nearly the same as the
commands for the master. Note, however, that the commands are not required to be
the same. Only the input procedure TIME commands must match between the master
and slave. The SLAVE command sets the input procedure for slave operation. This
forces the input sampling clock to come from the master unit. The inputs of the slave
are sampled simultaneously with the inputs of the master. A processing procedure
defines the same processing as the master. FFT values are sent to the PC through the
$BINOUT com pipe. The blocks of FFT data are synchronized with FFT data from the
master unit.

Communication with several Data Acquisition Processors can be handled with DLOG
or with a high level language such as C or BASIC. This application uses a high level
language for communications.

To configure the master unit, a high level language program transfers the master
DAPL commands to the master Data Acquisition Processor through com pipe 2. After
the master unit is configured, the DAPL commands for the slave unit are sent through
com pipe 0.

The input procedure of the slave unit must be started before that of the master unit.
With the high level language, the following command is sent to the slave unit through
com pipe 0.

START ASLAVE, BSLAVE

The following command is sent through com pipe 2 to start the master unit which
causes both the master and slave to begin sampling.

START AMASTER, BMASTER

The high level language receives binary data from the slave unit and the master unit
by reading from com pipe 1 and 3 respectively. When data acquisition is complete, the
master unit should be stopped before the slave unit is stopped.

DLOG also can be used to communicate with several synchronous Data Acquisition
Processors. DLOG starts each Data Acquisition Processor in the order they are
numbered. The master unit is assumed to be the last Data Acquisition Processor. The
I/0 addresses of each Data Acquisition Processor should be configured so that the
master unit is last.

Communications 133

Application 48 — Serial Communication

The DAP 801 has an onboard serial port that can communicate with external
peripherals. This model also can operate in stand-alone mode. This application
illustrates communication with an external peripheral, logging data summaries to an
external serial printer. A hardcopy print is particularly useful for data reports and as a
backup against accidental data loss.

RESET

PIPES P1,P2,P3

IDEF A 1
SET IPO SO
TIME 10000
END

PDEF B

HIGH (I1PO, 100, P1)
LOW (1PO, 100, P2)
AVERAGE (1PO, 100, P3)
FORMAT (I1PO)
FORMAT OUTPUT=$SEROUT (P1, P2, P3)
END
START A, B

The first FORMAT command formats the raw data and sends the data to the PC. The
second FORMAT command formats the high, low, and average values of blocks of 100
data values and sends the results to an external printer connected to the Data
Acquisition Processor serial port. The printer generates a summary line once every
second.

134 Communications

Com pipes are special pipes used for controlling DAPL communications. The
OUTPUT= specification in the FORMAT command redirects the formatted output from
the default text com pipe, $SYSOUT, to the serial com pipe, $SEROUT. When DAPL is
initialized, six text com pipes are defined:

$SYSOUT - system output com pipe
$SYSIN - system input com pipe
$SEROUT - serial output com pipe
$SERIN - serial input com pipe
$PAROUT - PC output com pipe
$PARIN - PC input com pipe

The system com pipes $SYSIN and $SYSOUT are assigned to either the serial com
pipes or the PC com pipes, depending on the outcome of power-up communication
initialization. See the Installation chapter of the Data Acquisition Processor hardware
manual for more information about communication initialization.

When a Data Acquisition Processor with a serial port is operated inside a PC, the

serial input port $SERIN is available for reading serial input characters. The
Developer's Toolkit for DAPL provides access to $SERIN.

Communications 135

Index

BBINOUT L.ttt b et s b et et e e e seebesbe st e e et ereebeebenre it
$SERIN
$SEROUT
Analog output
Application

Almost Simultaneous Sampling .
ASYNCRIONOUS OULPUL ..ottt sa et st sb et reeneene e
YN0 (0] = oo 1o o [OOSR
AVEraging....cccooverveveienerieneiiennas
Calculating Transfer Functions
DAPL EXpressions............c.ee...
Detecting Bit TraNSITIONScvcviiiiiiiieirisieee et
Digital FIEIING . ..c.eiviitiieceeee ettt b et r e ae et
Digital Input
Digital OSCIIOSCOPEviverierieiiciiite ettt sttt be bt ese e e ebesresre s
Extracting a Bit from a Digital INPUL..........ccooiiiiiiiiii s
Finding Deviations between Inputs......
Finding Histograms.................
Generating One-Shot Pulses
Generating Periodic WaVEfOrMScooiiiiiiiiiiieeis et
Generating Periodic Waveforms by COPYINg.......cccovviiiiiiiiniieseeseese s
Generating Periodic Waveforms by Interpolation .
GeNErating WaVE OIS,ciiiiiiiieiee sttt resaeneas
Identifying Maxima and MiNIMa..........cooiuiiiieiiiiniieeie e
Interpolation........c.ccoeveiviviienescienn,
Mixing Fast Inputs and Slow Inputs
Multiple Rate Data Transfer..........c.cccovenan.

Observing Timing of Rotating MaChineryccccoveiiiiiiiiineie e
PEAK DELECLION ...ttt na et
PID Control
Pulse Width MOAUIBLIONooviiiiiiiic s
Real-Time Data ANAIYSIScveveiiiiesieiieieiee ettt eesesre st
Retriggeringcc.cocevevenae

Sampling 5000 Values
Sampling Three Inputs
Sending Data to a Data ACQUISItION PrOCESSONcvciieiuiieinierierieieesiesesre e see e seesesaeseas
Serial COMMUNICALION.c.iiveiiiitiiiteer bbb
Simultaneous Transfer of Text Data and Binary Data
Y0 0T T I T o= SO
SPECLIAI ANGIYSIS. . .c.viieiieiicti ettt
Spike Detection..........c.ccoceuennne
Synchronizing Several DAPs

Index 137

Synchronous Output
Text Communication

Text Communication from Several Tasks.........cccovvriiriiniiee e 123
Thermocouple LINEAriZAtiONcoviiiieiiiiesieie e e 77
Time Stamping Pulses

Triggering 0N TWO CONILIONS.c.coiiiiiiirere et 61
Using Analog OULPUL EXPANSTONceiuiiiiiiitiriinie ettt 49
Using Hysteresis

Using Triggers to Calculate FreqUENCY.........cccoiiiiiiirieieeei e 73
Applications Overview
Arithmetic Expressions
AUTORANGEooutiiiiitietete ettt bbbt b bttt bbbttt
AVERAGEottt
Basic Real-Time Processing...
BAVERAGE ...ttt
BINAIY TNPUL ..ttt b ettt b bbb s b b e e st ebe b
Binary output
BPRINT ..ottt bbb bbb bbbttt bbbt b s
BUFFERING ..ottt bbbttt bbbttt
CHANGE
CRANNEE TIST ..o s
Channel pipe list
Communications

DACOUT....
DIAPVIBW ...ttt ettt e et e et e st e e e beeeteeebeeeateesateebeesaaeeebeeastaeabeeanbeesreeanbeeaseeebeeereens

DEXPAND ..otttk b bbbt
DIGIAL OULPUL ...ttt bbbttt b et sb e b et e s e st ebenne s
Digital Signal Processing
DIGITALOUT ...ttt bbbttt bbbttt
DILIMIT bbbt bbbt bbbt
Dummy input channel pipes....

FIRFILTER....
FORMAT ...ttt bbbt b bbbttt b ettt ab s

FOrMAtting PrefiXeSc.eoiiiieiee ettt bbbt b sne s
FREQUENC Y ..ottt bbbttt

138 Index

Further Real-Time PrOCESSINGcciiiiirieieieieiesie sttt e 12,75
Hardware Organization
[[T L= G @0) (0] | 1= USSP

LOW LBEEINCY ...ttt bbbt b e bttt b e bbbt e s e bt ebeebeane
MASTER

IMIINTIME ..ottt sttt e e et e et e bt e st e s teestesbeeaesbeentesbeeseesbesnteabeeseesreens
1Y/ [T L] F= 1 o] o I TP URRTP

L@ U 11 011 | USSP TP TPV PPRPUPPR
OUTPUTWAIT .ottt ettt ere e
PCOUNT

Proportional integral AeriVALIVEooiiiiiiieie e 115
PVALUE

RETRIGGER ...ttt bbbttt
Sampling Many Thermocouples

Sampling Several THerMOCOUPIESc.cviiiiiiiiriere e 81
SAWTOOTH. ...ttt bbbttt b ettt bbbttt bbbt 49
SCALE ... bbbttt 29

Index 139

SCHEDULING ..ottt bbbttt 116
SDACOUT
SDIGITALOUT ..ottt bbbttt bbbt bbbttt
SDISPLAY ..ttt bbbttt
Sensing Reference Temperature
L AT LI o Jo] o SO USSRV UROUSUPOPURN
SIMUIANEOUS SAMPIING ..oviiiiiee ettt sbe
SINEWAVE

Software Organization
SOFIWAE THIGGEITNG .ttt b bt b ettt b et e b e b e e s e neeneebenne s
1) T W T o= OO RURUUUOOTTOURPRTRPRTIN

SYNChronOUS DINANY INPULcuoiuiie ittt
TFUNCTION1
TFUNCTION2

140 Index

	Contents
	Introduction
	Hardware Organization
	Software Organization
	Applications Overview
	Input
	Basic Real-Time Processing
	Output
	Software Triggers
	Further Real-Time Processing
	Digital Signal Processing
	Process Control
	Communications
	Input
	Application 1 — Sampling Three Inputs
	Application 2 — Sampling 5000 Values
	Application 3 — Digital Input
	Basic Real-Time Processing
	Application 4 — Averaging
	Application 5 — Peak Detection
	Application 6 — Real-Time Data Analysis
	Application 7 — DAPL Expressions
	Application 8 — Extracting a Bit from a Digital Input
	Application 9 — Finding Histograms
	Output
	Application 10 — Asynchronous Output
	Application 11 — Synchronous Output
	Application 12 — Generating Waveforms
	Application 13 — Generating Arbitrary Periodic Waveforms
	Application 14 — Generating Periodic Waveforms by Copying
	Application 15 — Generating Periodic Waveforms by Interpolation
	Application 16 — Generating One-Shot Pulses
	Application 17 — Using Analog Output Expansion
	Software Triggering
	Application 18 — Software Triggers
	Application 19 — Peak Detection
	Application 20 — Implementing a Digital Oscilloscope
	Application 21 — Using Hysteresis
	Application 22 — Triggering on Two Conditions
	Application 23 — Retriggering
	Application 24 — Spike Detection
	Application 25 — Time Stamping Pulses
	Application 26 — Detecting Bit Transitions
	Application 27 — Using Triggers to Calculate Frequency
	Further Real-Time Processing
	Application 28 — Finding Deviations between Inputs
	Application 29 — Thermocouple Linearization
	Improving Thermocouple Accuracy
	Converting Temperatures to Fahrenheit
	Sampling Several Thermocouples
	Sampling Many Thermocouples
	Sensing Reference Temperature
	Application 30 — Interpolation
	Application 31 — Autoranging
	Application 32 — Identifying Maxima and Minima
	Application 33 — Almost Simultaneous Sampling
	Application 34 — Mixing Fast Inputs and Slow Inputs
	Application 35 — Multiple Rate Data Transfer
	Application 36 — Observing Timing of Rotating Machinery
	Digital Signal Processing
	Application 37 — Digital Filtering
	Application 38 — Spectral Analysis
	Application 39 — Calculating Transfer Functions
	Process Control
	Application 40 — Alarms
	Application 41 — PID Control
	Application 42 — Pulse Width Modulation
	Heater Controller
	Communications
	Application 43 — Text Communication
	Application 44 — Text Communication from Several Tasks
	Application 45 — Simultaneous Transfer of Text Data and Binary Data
	Application 46 — Sending Data to a Data Acquisition Processor
	Application 47 — Synchronizing Several Data Acquisition Processors
	Application 48 — Serial Communication
	Index

