
Developer’s Toolkit for DAPL Manual

Custom command developer’s toolkit
for DAPL and DAPL 2000

operating systems

Version 4.02

Microstar Laboratories, Inc.



This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1985 - 2000

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, and
DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of
Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number MSDTDM402-9807 1



Contents iii

Contents

1. Introduction ...........................................................................................................................1
Compatibility .....................................................................................................................2
Installation .........................................................................................................................3

2. Data Acquisition Programming in C ....................................................................................5
Sample Custom Command.................................................................................................9

3. System Interface File ...........................................................................................................13
Structures and Types........................................................................................................14
Functions and Macros ......................................................................................................15
Constants and Enumerations............................................................................................15

4. Using the Data Acquisition Runtime Library....................................................................19
Custom Task Parameters..................................................................................................20
Parameter Types...............................................................................................................22
Parameter Type Checking ................................................................................................23
Advanced Parameter Checking ........................................................................................24
Variables and Constants...................................................................................................27
Vectors.............................................................................................................................28
Auxiliary Functions..........................................................................................................30
Initializations and Allocations .........................................................................................31
Pipe Read and Write Routines .........................................................................................33
Application Examples Using Pipes ..................................................................................35
Text Transfer....................................................................................................................38
Blocked Pipe Operations..................................................................................................39
Other Pipe Routines .........................................................................................................45
Task Control Routines .....................................................................................................46
DAC Access..................................................................................................................... 47
Digital Output Lines ........................................................................................................47
Real Time Clock ..............................................................................................................48

5. Software Triggering Support..............................................................................................49
Establishing the Connection ............................................................................................50
Using the Trigger Functions.............................................................................................51
Special Trigger Modes .....................................................................................................54
Triggering Command Examples.......................................................................................54

6. Floating Point Support ........................................................................................................59
The Toolkit Libraries .......................................................................................................60
Floating Point Library Functions .....................................................................................61
Compiler Limitations .......................................................................................................62
Using Pipes ......................................................................................................................63
Example Application........................................................................................................65
Floating Point Error Handling .........................................................................................67

7. Digital Signal Processing Support ......................................................................................69
Building Custom Waveforms...........................................................................................69



iv Contents

Performing FFT Transforms ............................................................................................ 72
FFT Initialization....................................................................................................... 72
FFT Storage............................................................................................................... 73
FFT Window Operations........................................................................................... 75
FFT Precision Options .............................................................................................. 76
FFT Direction Options .............................................................................................. 76
Post-FFT Processing Options.................................................................................... 78
Other Options ............................................................................................................ 80
Typical FFT Options ................................................................................................. 82

Deferred Post-FFT Processing......................................................................................... 84
FFT Processing With More Than One Buffer.................................................................. 85
Example FFT Application ............................................................................................... 86
Using Finite Impulse Response Digital Filters ................................................................ 92

FIR Filter Initialization.............................................................................................. 92
FIR Filter Computation ............................................................................................. 94
FIR Filter Status ........................................................................................................ 96
Accessing FIR Results............................................................................................... 96
Additional FIR Operations ........................................................................................ 96

A Data Smoothing Application........................................................................................ 99
An EEG Filtering Example............................................................................................ 102

8. Real-Time Control............................................................................................................. 105
Strategies for Improving Real-Time Response .............................................................. 108
Using Floating Point...................................................................................................... 109

9. Customizing PID Control ................................................................................................. 111
Designing Control Commands....................................................................................... 112
Example Applications.................................................................................................... 115

10. Multitasking Support ...................................................................................................... 123
Suspending and Resuming Multitasking ....................................................................... 124
Available Services with Multitasking Off...................................................................... 125
Input Procedure Buffering ............................................................................................. 126
Application Examples.................................................................................................... 127
Interrupts and Latency ................................................................................................... 130

11. Programming Suggestions .............................................................................................. 131
Task Parameters............................................................................................................. 131
DAPL Names and C Names........................................................................................... 132
Naming Task Parameters ............................................................................................... 133
Debugging Custom Commands ..................................................................................... 134
Optimizing Custom Commands..................................................................................... 135
Using Assembly Language in Custom Commands ........................................................ 136

12. Compiling Custom Commands....................................................................................... 137
An Overview: Compiling and Running Custom Commands ......................................... 137
Batch Files ..................................................................................................................... 138
Code Conversion ........................................................................................................... 142
C Restrictions ................................................................................................................ 142

13. PC Support ...................................................................................................................... 145
Downloading from C ..................................................................................................... 146



Contents v

Downloading from Borland Pascal ................................................................................148

14. Data Acquisition Runtime Library.................................................................................151
Pipe Operations .......................................................................................................151
Pipe Buffer (PBUF) Operations...............................................................................151
Data Access .............................................................................................................152
Vectors.....................................................................................................................152
Task Control ............................................................................................................152
Text Formatting .......................................................................................................152
Asynchronous Device Output ..................................................................................152
Triggers....................................................................................................................153
FFT ..........................................................................................................................153
Digital Filters...........................................................................................................153
PID Feedback Control .............................................................................................153
General Math ...........................................................................................................154
Requests to Command Interpreter ...........................................................................154

C Compiler Runtime Routines .......................................................................................155
atof ....................................................................................................................157
dac_out ..............................................................................................................158
digital_out .........................................................................................................159
digital_set_bit ....................................................................................................160
digital_toggle_bit ..............................................................................................161
exit.....................................................................................................................162
fft_chngbuf ........................................................................................................163
fft_init................................................................................................................164
fft_postop ..........................................................................................................168
fft_receive..........................................................................................................170
fft_request..........................................................................................................171
fft_status ............................................................................................................172
fir_advance ........................................................................................................173
fir_change..........................................................................................................175
fir_init................................................................................................................177
fir_receive..........................................................................................................179
fir_request .........................................................................................................180
fir_status............................................................................................................182
fprintf.................................................................................................................183
fsend ..................................................................................................................184
icosine ...............................................................................................................185
icoswave ............................................................................................................186
icplxwave ..........................................................................................................189
isine ...................................................................................................................191
isinewave...........................................................................................................192
isqrt....................................................................................................................194
memcpy .............................................................................................................195
param_error .......................................................................................................196
param_error_msg...............................................................................................197
param_process ...................................................................................................199
param_type ........................................................................................................201



vi Contents

pbuf_get ............................................................................................................ 202
pbuf_get_cnt ..................................................................................................... 204
pbuf_get_data_ptr ............................................................................................. 205
pbuf_get_max_cnt............................................................................................. 206
pbuf_get_min_cnt ............................................................................................. 207
pbuf_open ......................................................................................................... 208
pbuf_put ............................................................................................................ 210
pbuf_set_cnt...................................................................................................... 211
pbuf_set_data_ptr.............................................................................................. 212
pbuf_set_max_cnt ............................................................................................. 213
pbuf_set_min_cnt.............................................................................................. 214
pid_open ........................................................................................................... 215
pid_preset.......................................................................................................... 216
pid_set_setpoint ................................................................................................ 218
pid_tune ............................................................................................................ 219
pid_update......................................................................................................... 222
pipe_get............................................................................................................. 223
pipe_get_float ................................................................................................... 224
pipe_num .......................................................................................................... 225
pipe_num_complete .......................................................................................... 227
pipe_open.......................................................................................................... 229
pipe_purge ........................................................................................................ 230
pipe_put ............................................................................................................ 231
pipe_put_float ................................................................................................... 232
pipe_rem ........................................................................................................... 233
pipe_width ........................................................................................................ 234
printf ................................................................................................................. 235
ralloc ................................................................................................................. 236
send ................................................................................................................... 237
sprintf ................................................................................................................ 238
sscanf ................................................................................................................ 239
sys_exec_command........................................................................................... 240
sys_get_info ...................................................................................................... 241
sys_get_time...................................................................................................... 245
sys_get_version................................................................................................. 246
sys_set_multitasking ......................................................................................... 247
task_pause......................................................................................................... 248
task_switch........................................................................................................ 249
trigger_get ......................................................................................................... 250
trigger_get_immediate ...................................................................................... 251
trigger_get_opmode .......................................................................................... 253
trigger_get_property.......................................................................................... 254
trigger_get_status .............................................................................................. 256
trigger_num....................................................................................................... 257
trigger_open ...................................................................................................... 258
trigger_put......................................................................................................... 259
trigger_set_status .............................................................................................. 260



Contents vii

trigger_updt_put ................................................................................................262
trigger_updt_status ............................................................................................264
trigger_wait .......................................................................................................265
var32_get...........................................................................................................267
var32_set ...........................................................................................................268
vector_length.....................................................................................................269
vector_start ........................................................................................................270
vector_type ........................................................................................................271
vector_width......................................................................................................272

15. Error Messages ................................................................................................................273
Compilation Messages.............................................................................................273
Linking Messages ....................................................................................................273
Conversion Messages ..............................................................................................274
Downloading Messages ...........................................................................................274
Execution Messages.................................................................................................275

16. Appendix A. Compatibility with Previous Versions......................................................277
Binary Code Compatibility ............................................................................................277
Source Code Compatibility............................................................................................278

17. Appendix B: DAP 2400a/DAP 2416a DSP Support ......................................................281
FFT Programming Examples .........................................................................................284
DSP Routines for the DAP 2400a and DAP 2416a .......................................................288

dsp_alloc ...........................................................................................................289
dsp_done ...........................................................................................................290
dsp_receive_result .............................................................................................291
dsp_request_init ................................................................................................292
dsp_send_request ..............................................................................................294

18. Appendix C: Software Triggering Compatibility..........................................................295
Using the Old Triggering Functions...............................................................................295

trig_assert ..........................................................................................................302
trig_get_assertion ..............................................................................................303
trig_get_reader_cnt............................................................................................304
trig_get_writer_cnt ............................................................................................305
trig_open_reader................................................................................................306
trig_open_writer ................................................................................................307
trig_set_writer_cnt.............................................................................................308
trig_update_reader.............................................................................................309
trig_update_writer .............................................................................................310
trig_wait_for_assert...........................................................................................311

Index .......................................................................................................................................313





Introduction 1

1. Introduction

The Developer's Toolkit for DAPL contains the software tools required for creating
custom commands for Microstar Laboratories Data Acquisition Processors. Custom
commands are user-defined processing task commands that extend the DAPL or
DAPL 2000 operating system. Most applications require only the data processing
functions available as predefined DAPL commands, so the Developer's Toolkit for
DAPL is designed primarily for advanced users.

Custom commands are written in C, compiled and stored in the host PC, and
downloaded from the PC to a Data Acquisition Processor. Once custom commands
are downloaded, they are used in DAPL processing procedures in the same manner as
predefined DAPL commands.

A DAPL file downloaded to the Data Acquisition Processor defines processing
procedures containing lists of task. Each task definition invokes a predefined or
custom command. The task definition specifies a list of parameters, identifying the
data sources and data destinations to be used by the custom command. A typical
custom command consists of three sections: a section that analyzes the task
parameters, an initialization section, and an endless processing loop.

When the Data Acquisition Processor receives a START command for a processing
procedure containing a custom task, the Data Acquisition Processor activates the
custom command. The custom command first extracts the parameter information
provided by the Data Acquisition Processor, checking that the parameters are valid.
The command then executes its initialization code. After initialization, the task
executes the endless processing loop. This loop reads data from pipes or variables,
processes the data, and writes the results to pipes or variables. The task processes data
indefinitely until the Data Acquisition Processor is stopped.

Pipes provide the connections for data to move between tasks. The pipes specified in a
custom command parameter list may be communication pipes, input channel pipes,
user-defined pipes, or other types. It makes no difference within the custom command;
all pipes are treated uniformly.

This document explains how to create and use custom commands. Before studying
this document, the reader should become familiar with the Data Acquisition Processor
manuals, particularly the DAPL manual.



2 Introduction

Compatibility

The Developer's Toolkit for DAPL supports DAPL versions 4.0 and above and
DAPL 2000 versions 1.0 and above. Some DAPL features supported by the
Developer's Toolkit for DAPL are not available in DAPL versions prior to version
4.3. The waveform, FFT, and FIR filter functions are available only with DAPL 2000.

For all supported compiler versions, the custom commands are compiled as DOS
applications written in C.

The Developer's Toolkit for DAPL supports the following compilers:

• Microsoft C compiler version 6
• Microsoft C/C++ compiler version 7
• Microsoft Visual C++ version 1.0 and 1.5 Professional Edition
• Borland C++ compiler versions 4.0 and 4.5

The Developer's Toolkit for DAPL supplies two versions of its runtime library. The
SMALL library supports all Data Acquisition Processor, DAPL, and supported
compiler types. This library provides no floating point features, but generates the
smallest and most efficient code modules. The FP library uses more code and system
memory space, and provides access to the floating point emulator or hardware
services integrated into the DAPL operating system.



Introduction 3

Installation

Before installing the Developer's Toolkit for DAPL software, make backup copies of
all Microstar Laboratories diskettes and store the original diskettes in a safe place.

After making backup copies, insert the Developer's Toolkit for DAPL diskette in drive
A: and enter the DOS command:

MORE  <A:README.TXT

The PC will display any recent changes or corrections that are not included in this
document.

The Developer's Toolkit for DAPL is installed by copying the contents of the diskette
to a directory on your PC. The DOS XCOPY command can be used to perform this
copy:

XCOPY A:*.* C:\DTDC /S

The Developer's Toolkit for DAPL diskette includes a file named FILES.TXT, which
contains descriptions of all of the files on the diskette.





Data Acquisition Programming in C 5

2. Data Acquisition Programming in C

The Developer's Toolkit for DAPL provides a C runtime environment supporting data
acquisition and real time applications. Within this environment, the Developer's
Toolkit for DAPL  provides a library of functions for input and output of data and for
control of the Data Acquisition Processor hardware. These functions are called system
routines because they give access to services provided by the DAPL or DAPL 2000
operating system. In addition to the system routines, the Developer's Toolkit for
DAPL library supplies replacement functions for some of the Microsoft or Borland C
runtime library components. These substitutions are automatic and invisible, and they
require no changes to the runtime libraries that come with the compilers.

A C custom command is a conventional C program that calls system routines to
perform operations specific to the DAPL environment. The most commonly used
routines provide access to DAPL pipes and the data they contain:

pipe_getpipe_getpipe_getpipe_get read a data value from a DAPL pipe
pipe_get_floatpipe_get_floatpipe_get_floatpipe_get_float read a floating point value from a DAPL FLOAT pipe
pipe_putpipe_putpipe_putpipe_put write a data value to a DAPL pipe
pipe_put_floatpipe_put_floatpipe_put_floatpipe_put_float write a floating point value to a DAPL FLOAT pipe
pipe_openpipe_openpipe_openpipe_open open a DAPL pipe for input or output
pipe_numpipe_numpipe_numpipe_num determine whether a pipe contains data
pipe_num_completepipe_num_completepipe_num_completepipe_num_complete return the number of data values in a pipe
pipe_widthpipe_widthpipe_widthpipe_width return the width of a DAPL pipe
pipe_purgepipe_purgepipe_purgepipe_purge remove all data values from a DAPL pipe
pipe_rempipe_rempipe_rempipe_rem remove data items from a DAPL pipe



6 Data Acquisition Programming in C

Eleven functions provide access to pipe data in blocks called pipe buffers, rather than
individual items:

pbuf_openpbuf_openpbuf_openpbuf_open open a pipe buffer and allocate storage
pbuf_getpbuf_getpbuf_getpbuf_get read a block of data from a DAPL pipe
pbuf_putpbuf_putpbuf_putpbuf_put write a block of data to a DAPL pipe
pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr obtain a pointer to the data storage
pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr set the data storage pointer
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt determine the number of items available in storage
pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt set the number of items placed into storage
pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt determine the minimum number of items to fetch
pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt set the minimum number of items to be fetched
pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt determine the maximum number of items to fetch
pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt set the maximum number of items to fetch

Four system routines control the Data Acquisition Processor output hardware:

dac_outdac_outdac_outdac_out set a digital- to-analog converter output voltage
digital_outdigital_outdigital_outdigital_out set the sixteen bit value of a digital output port
digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit set a single bit of a digital output port
digital_toggle_bitdigital_toggle_bitdigital_toggle_bitdigital_toggle_bit toggle a single bit of a digital output port

Twelve system routines manipulate DAPL software triggers:

trigger_gettrigger_gettrigger_gettrigger_get return next available trigger assertion
trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate return assertion or status immediately
trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode return a trigger's operating mode
trigger_get_propertytrigger_get_propertytrigger_get_propertytrigger_get_property return a trigger's property value
trigger_get_statustrigger_get_statustrigger_get_statustrigger_get_status return a trigger's current status count
trigger_numtrigger_numtrigger_numtrigger_num determine if an assertion is present
trigger_opentrigger_opentrigger_opentrigger_open initialize a trigger
trigger_puttrigger_puttrigger_puttrigger_put place an assertion into a trigger
trigger_set_statustrigger_set_statustrigger_set_statustrigger_set_status set a trigger’s status field
trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put increment a trigger’s status then assert
trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status increment a trigger’s status field
trigger_waittrigger_waittrigger_waittrigger_wait wait for a trigger assertion

Two system routines provide timing functions:

sys_get_timesys_get_timesys_get_timesys_get_time get the value of the real-time clock
task_pausetask_pausetask_pausetask_pause pause for a specified time



Data Acquisition Programming in C 7

Seven system routines provide string formatting and text output functions:

sendsendsendsend print a string
fsendfsendfsendfsend print a string to a specific output pipe
printfprintfprintfprintf format and print a string
sprintfsprintfsprintfsprintf format a string
fprintffprintffprintffprintf format a string and print the string to a specific output pipe
sscanfsscanfsscanfsscanf parse a string using C-style conversions
sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command send a direct command to the DAPL operating system

Six routines provide integer math operations and waveform construction:

icosineicosineicosineicosine return the integer cosine of an integer value
isineisineisineisine return the integer sine of an integer value
isqrtisqrtisqrtisqrt return the integer square root of an integer value
isinewaveisinewaveisinewaveisinewave construct a sampled sine function table
icoswaveicoswaveicoswaveicoswave construct a sampled cosine function table
icplxwaveicplxwaveicplxwaveicplxwave construct a complex-valued function table

Five routines provide PID control services:

pid_openpid_openpid_openpid_open open a PID control block
pid_presetpid_presetpid_presetpid_preset establish a pre-determined PID operating state
pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint adjust the PID setpoint
pid_tunepid_tunepid_tunepid_tune set the values of PID control parameters
pid_updatepid_updatepid_updatepid_update compute the real-time PID control output

Six routines provide access to fast Fourier transform operations and supplemental
processing:

fft_initfft_initfft_initfft_init initialize an FFT control block
fft_requestfft_requestfft_requestfft_request request an FFT transform operation
fft_statusfft_statusfft_statusfft_status check completion of transform
fft_receivefft_receivefft_receivefft_receive obtain transform results
fft_postopfft_postopfft_postopfft_postop perform follow-up processing after transform
fft_chngbuffft_chngbuffft_chngbuffft_chngbuf change the FFT storage area



8 Data Acquisition Programming in C

Six routines provide access to FIR digital filtering operations:

fir_initfir_initfir_initfir_init initialize a FIR filter control block
fir_requestfir_requestfir_requestfir_request request filtering of a supplied data block
fir_statusfir_statusfir_statusfir_status check completion of filtering
fir_changefir_changefir_changefir_change dynamically alter filter characteristics
fir_receivefir_receivefir_receivefir_receive obtain filtering results
fir_advancefir_advancefir_advancefir_advance skip filtering steps by adjusting shift register

Two routines provides multitasking control:

sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking turn multitasking on or off
task_switchtask_switchtask_switchtask_switch force a task to release the CPU

The following routines perform miscellaneous functions:

atofatofatofatof convert an ASCII string to a float
exitexitexitexit terminate a task
memcpymemcpymemcpymemcpy copy a memory region
param_errorparam_errorparam_errorparam_error issue an error message
param_error_msgparam_error_msgparam_error_msgparam_error_msg generate task error message and terminate task
param_processparam_processparam_processparam_process extract parameters and perform parameter type checking
param_typeparam_typeparam_typeparam_type return the data type of a task parameter
rallocrallocrallocralloc allocate temporary storage
vector_lengthvector_lengthvector_lengthvector_length return the length of a DAPL vector
vector_startvector_startvector_startvector_start return the address of the first element of a DAPL vector
vector_typevector_typevector_typevector_type return the type of data contained by the DAPL vector
vector_widthvector_widthvector_widthvector_width return the size in bytes of one data element in the DAPL

vector
sys_get_infosys_get_infosys_get_infosys_get_info return system information
sys_get_versionsys_get_versionsys_get_versionsys_get_version return the DAPL version number

Five routines provide access to the digital signal processor on a DAP 2400a:

dsp_allocdsp_allocdsp_allocdsp_alloc allocate a DSP request
dsp_request_initdsp_request_initdsp_request_initdsp_request_init initialize a DSP request
dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request send a DSP request
dsp_donedsp_donedsp_donedsp_done return the status of an active DSP request
dsp_receive_resultdsp_receive_resultdsp_receive_resultdsp_receive_result receive results of a DSP request



Data Acquisition Programming in C 9

Sample Custom Command

A typical custom command implements a task which reads data from one or more
input pipes, processes the input data in some way, and writes data to one or more
output pipes. The command may also have various constant or variable parameters
which control the way the command processes data. The pipes and the task which uses
the custom command are defined by a DAPL file downloaded to a Data Acquisition
Processor. The DAPL file associates the pipes specified in the task parameter list with
the corresponding parameters of the custom command. The pipes serve as a logical
connection between tasks when the custom command is started.

The following is a typical example. It can serve as a starting place for developing new
custom commands. This example, called ZTRUNC, reads data values from one pipe,
limits values to a specified lower limit, and sends the modified data to another pipe:

/* ZTRUNC (p1, vlim, p2)
* - read data from pipe 'p1'
* - truncate numbers below the limit 'vlim'
* - output data to pipe 'p2'
*/
#include <cdapcc.h>

/* Function prototypes */
void main (PIB **);
void ztrunc (PIPE *, VAR *, PIPE *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    /* Extract task parameters */
    argv = param_process (plib, &argc, 3, 3,
                          T_PIPE_W, T_VAR_W, T_PIPE_W);
    ztrunc ((PIPE *) argv[1], (VAR *) argv[2],
            (PIPE *) argv[3]);
}



10 Data Acquisition Programming in C

void ztrunc (PIPE *in_pipe, VAR *low_limit, PIPE *out_pipe)
{
    int val;
    int limit;

    /* Perform parameter initializations */
    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);

    /* Perform the real-time processing */
    while (1) {
        val = (int) pipe_get (in_pipe);
        limit = *low_limit;
        if (val < limit) val = limit;
        pipe_put (out_pipe, (long)val);
    }
}

The following description briefly explains how this custom command works. All the
Microstar Laboratories system calls are explained in detail in later chapters.

CDAPCC.H is the include file for the Developer's Toolkit for DAPL. CDAPCC.H
defines all constants, macros, and types required for access to system routines. This
file must be included in any custom command source file. In the above example, the
identifiers PIB, T_PIPE_W, T_VAR_W, P_READ, P_WRITE, param_processparam_processparam_processparam_process,
pipe_openpipe_openpipe_openpipe_open, pipe_getpipe_getpipe_getpipe_get, and pipe_putpipe_putpipe_putpipe_put are defined in the file CDAPCC.H.

A custom task begins execution at main. DAPL passes main a pointer to the task's
parameters. The function param_processparam_processparam_processparam_process checks that the task parameters are of the
correct types and returns an array of parameter pointers. The two T_PIPE_W
identifiers specify that the corresponding command parameters are pipes containing
data of type int. The T_VAR_W identifier specifies that the remaining parameter is a
VARIABLE of type int. The three parameter values argv[1], argv[2] and
argv[3] are extracted in sequence, and passed to the function called ztrunc.

The first and third parameters of the ZTRUNC command point to pipes. The file
CDAPCC.H defines a PIPE data structure. The pipe structures are not manipulated
directly, but rather are passed to and from system functions by means of pointers. The
main function casts the two pipe arguments of ZTRUNC into the type PIPE * as it
passes them to the auxiliary function ztrunc.

The ZTRUNC command also requires a lower limit parameter which is a DAPL
VARIABLE. This variable is defined by a VARIABLE command in DAPL and declared



Data Acquisition Programming in C 11

as type VAR in a custom command. The main function casts the second argument of
ZTRUNC into the type VAR * as it passes it to the auxiliary function ztrunc.

The function ztrunc first performs some initialization steps. It opens in_pipe for
reading and out_pipe for writing. No special setup is required for the variable limit
parameter.

The while loop performs the actual data processing. The function pipe_getpipe_getpipe_getpipe_get
removes the next data value from the input pipe and places this value into val.
Because the function param_processparam_processparam_processparam_process guarantees that the input pipe contains data of
type int, we may cast the returned value to int. Next, function ztrunc fetches a
copy of the most current value of the limit variable. The if statement replaces each
value lower than the limit value with the limit value. The function pipe_putpipe_putpipe_putpipe_put sends
the data to the output pipe.

In order to use the ZTRUNC custom command, the custom command code must be
compiled, linked, and downloaded from the PC to the Data Acquisition Processor.
This process is explained in more detail later in this document. After downloading, the
ZTRUNC command can be used in any processing procedure, as in the following
example:

; This DAPL command list acquires data from
; single-ended input channel 0, replaces all
; negative data values with zero, and prints
; the truncated data.

RESET
PIPES P1
VARIABLE VLIM = 0
IDEFINE A 1
SET IPIPE0 S0
TIME 10000
END
PDEFINE B
ZTRUNC (IPIPE0, VLIM, P1)
FORMAT (P1)
END



12 Data Acquisition Programming in C

The ZTRUNC command can be used to define more than one task in a processing
procedure. Each ZTRUNC task executes independently.

The ZTRUNC custom command code can be modified easily to perform many data
processing functions. Simply replace the if statement with different C code which
modifies the value of val. No additional knowledge about system routines is
necessary.



System Interface File 13

3. System Interface File

The file CDAPCC.H defines the interface between C custom commands and the
resources of the Data Acquisition Processor. CDAPCC.H contains structure, function,
macro, and constant definitions. The upper-case and lower-case characters in
identifiers printed in this document match the identifiers as they appear in CDAPCC.H.

The file CDAPCC.H may contain functions or structures that are not documented in this
document — these are reserved for future expansion.

The file CDAPCC.H itself contains only definitions common to all Developer's Toolkit
for DAPL library versions. At compile time, CDAPCC.H includes additional
declarations from the file CDAP4.H, for supporting DAPL version 4, or the file
CDAP16.H, for supporting DAPL 2000. One additional file called CDAPBACK.H is
also included. This file has macro and function prototype definitions for backward
compatibility with notations used in previous versions of the Developer's Toolkit for
DAPL. Notations defined in CDAPBACK.H should not be used for new development. If
the notations described in this manual are used, and not the old notations, the
CDAPBACK.H include directive can be changed to a comment.



14 System Interface File

Structures and Types

DAPL uses several data types that are not defined in Standard C. CDAPCC.H defines
these data types.

The most important data types are the ones which provide access to pipes, vectors,
and triggers. These types are:

PIPE *
VECTOR *
TRIGGER *

CDAPCC.H also defines several auxiliary structured types — pipe buffer, parameter
information block, PID control block, FFT control block, and FIR filter control block:

PBUF *
PIB *
PID *
FFTB *
FIRB *

The individual fields of these structures are not accessed directly. Instead, structure
pointers are passed to and from system routines, and functions provide access to
values stored internally. This ensures compatibility with future versions of DAPL and
the Developer's Toolkit for DAPL.

CDAPCC.H also defines data types of general utility for use by C custom commands.
The first two are integer pointer types that provide access to DAPL word variables
and long variables:

VAR *
LVAR *

The next two provide access to DAPL constant values:

CONSTANT *
LCONSTANT *

The last one is a structure that organizes the coefficient sets used by PID control
functions. It is defined and used only within custom commands, and it is the only
structure for which individual fields can be accessed.

PIDCOEF



System Interface File 15

Functions and Macros

The file CDAPCC.H defines prototypes for all system functions.

Developer's Toolkit for DAPL system routines are implemented either as functions or
as macros. Functions call system routines of the Data Acquisition Processor. Macros
are identifiers defined with the C preprocessor directive #define to represent values
or expressions.

Some of the system functions defined in the file CDAPCC.H have names prefixed with
an underscore. These names are part of the interface implementation, and should not
be called directly.

Constants and Enumerations

Several constants are defined in the file CDAPCC.H. Use of these constants is
described in Chapter 4.

DAPL Parameter Types:

T_VAR_W
T_VAR_L
T_CONST_W
T_CONST_L
T_TRIGGER
T_PIPE_B
T_PIPE_W
T_PIPE_L
T_PIPE_FL
T_RFLAG
T_STR
T_VECTOR_W
T_VECTOR_L

Pipe Input/Output Flags:

P_READ
P_WRITE

Region Flag Values:

R_INSIDE
R_OUTSIDE



16 System Interface File

Hardware Type Values:

H_800     5
H_1200E   6
H_1200A   6
H_2400E   7
H_2400A   7
H_801     8
H_3200E   9
H_3200A   9
H_1216E  10
H_1216A  10
H_2416E  11
H_2416A  11
H_3000A  12
H_3400A  13
H_3216A  14

Request codes for sys_get_infosys_get_infosys_get_infosys_get_info:

GI_DECIMAL
GI_TERMINAL
GI_OVERQ
GI_OBIPOLAR
GI_IBIPOLAR
GI_SYSOUT
GI_SYSIN
GI_IN_CNT
GI_OUT_CNT
GI_SERIAL
GI_ICHAN_CNT
GI_IN_ACTIVE
GI_DEFAULT_BUF_SIZE
GI_OUT_ACTIVE



System Interface File 17

GI_HMEMAVL
GI_HMEMSIZE
GI_TMEMAVL
GI_TMEMSIZE
GI_OEM_ID
GI_FLOAT_ERROR
GI_ROUNDING
GI_AINEXPAND
GI_FFTSIZE
GI_IBURST_ACTIVE
GI_OBURST_ACTIVE
GI_BUFFERING
GI_SCHEDULE_MODE
GI_QUANTUM

Selections for multitasking control:

eMultiOn
eMultiOff
eMultiOffSYSIN

Selections for scheduling control:

eSchedAdaptive
eSchedFixed

Selections for buffer size control:

eBuffersNone
eBuffersMedium
eBuffersLarge



18 System Interface File

Selections for DSP process configuration:

eWaveWord
eWaveLong
FFTDIR_FORWARD
FFTDIR_REVERSE
WINDOW_RECTANGULAR
WINDOW_HANNING
WINDOW_HAMMING
WINDOW_BARTLETT
WINDOW_BLACKMAN
FFTPOST_DEFER
FFTPOST_REAL
FFTPOST_CPLX
FFTPOST_POWER
FFTPOST_MAGNITUDE
FFTPOST_MAG_PHASE
FFTPOST_NORMPOWER
FFT_REALIN
FFT_CPLXIN
FFT_PAIRWISE
FFT_SEPARATED
FFT_HALFOUT
FFT_FULLOUT

The last part of file CDAPPCC.H provides C prototypes for the system functions in the
Developer's Toolkit for DAPL.



Using the Data Acquisition Runtime Library 19

4. Using the Data Acquisition Runtime Library

This chapter illustrates the Developer's Toolkit for DAPL system routines with a
number of typical custom commands. Several useful programming techniques to
facilitate development of custom commands are described.



20 Using the Data Acquisition Runtime Library

Custom Task Parameters

When the Data Acquisition Processor begins executing a custom command task, the
task’smain function is called. This function must obtain access to the parameter
information provided by DAPL.

The main function of a custom command receives a pointer to the task’s parameters in
a structure called a PIB (rather than the usual argc and argv command line
parameters of a Standard C application). The Data Acquisition Processor can execute
several instances of a custom command concurrently; each task receives a pointer to a
unique PIB. Each pointer in the list points to an internal DAPL data structure
containing complete information about the corresponding parameter.

The custom command needs to extract the required parameter values from these data
structures. While doing this, it also needs to check the parameter list to see whether
the required parameters are present and of the correct types. The function
param_processparam_processparam_processparam_process provides these services; it checks parameter types and returns a list
of pointers to parameter values.

The use of param_processparam_processparam_processparam_process is illustrated in the following example:

#include <cdapcc.h>
void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 2, 2,
                      T_PIPE_W, T_VAR_W);
.
.
.

The first parameter to param_processparam_processparam_processparam_process is the plib parameter which the DAPL
operating system provides to the main function. The param_processparam_processparam_processparam_process function sets
the second parameter variable to the number of parameters in the parameter list for the
task in the DAPL file. The next two parameters respectively specify the minimum and
maximum numbers of parameters that the custom task accepts. This allows a task to
accept a variable number of parameters. The remaining parameters are flags that
specify the correct parameter types for each of the task’s parameters.



Using the Data Acquisition Runtime Library 21

The function param_processparam_processparam_processparam_process returns a pointer list in the manner of the argv
parameter of a Standard C main function, except that here, the pointers in the list are
pointers to various data types, not just text strings. For example, pointers to numeric
values or to data elements such as PIPE and VARIABLE can be in this list.

The example above specifies that the task’s first parameter is a word pipe and the
task’s second parameter is a word variable. The function list pointer returned by
param_processparam_processparam_processparam_process is assigned to the local argv variable. The task’s parameters then
can be referenced by indexing argv:

argv[0] - pointer to the name of the custom command
argv[1] - pointer to parameter 1
argv[2] - pointer to parameter 2
argv[3] - pointer to parameter 3
etc.

There are a number of techniques that can be used to extract the pointers from this list.
One way is to declare pointer variables of the appropriate type and assign the values
from the list, applying the appropriate type casts. Another way is to cast the returned
list pointer to the Standard C Library type va_list and use the C va_arg macro to
extract the pointer values and apply the appropriate type casts. A third way is to
specify the items from the pointer list as parameters to an auxiliary function, which
then interprets them as pointers of the appropriate type. Most of the examples in this
manual use the auxiliary function technique.



22 Using the Data Acquisition Runtime Library

Parameter Types

A custom command can use many types of DAPL parameters. The following table
lists the allowed DAPL parameter types, the C data types which correspond to the
DAPL parameters, and the type flags used by param_processparam_processparam_processparam_process.

DAPL Type C Type Type Flag

byte pipe PIPE * T_PIPE_B
word pipe PIPE * T_PIPE_W
long pipe PIPE * T_PIPE_L
float pipe PIPE * T_PIPE_FL
trigger TRIGGER * T_TRIGGER
word vector VECTOR * T_VECTOR_W
long vector VECTOR * T_VECTOR_L
word variable VAR * T_VAR_W
long variable LVAR * T_VAR_L
word constant CONSTANT * T_CONST_W
long constant LCONSTANT * T_CONST_L
region flag const int * T_RFLAG
string const char * T_STR

PIPE, TRIGGER, and VECTOR are C types defined in the file CDAPCC.H. These
structures are not manipulated directly, but pointers to them are passed to and from
system routines.

The first symbol in a DAPL region is a DAPL region flag INSIDE or OUTSIDE. A
region flag is a pointer to a constant that contains one of two values, R_INSIDE or
R_OUTSIDE. These constants are defined in the file CDAPCC.H.  A region flag is
always followed by two word values, either variables or constants, which define the
lower and upper limits of the region.

A DAPL string is a pointer to a character array. DAPL strings are defined using the
DAPL STRING command. The contents of DAPL strings must not be modified by
custom commands.



Using the Data Acquisition Runtime Library 23

Parameter Type Checking

In addition to generating an argument vector, param_processparam_processparam_processparam_process checks the type of
each task parameter. A custom task must verify that it receives a correct number of
parameters of the correct types. If incorrect parameters are passed to a task, and if the
parameter types are not checked, a system failure may result.

If param_processparam_processparam_processparam_process detects a parameter error in a task, it generates an error message
and halts the task. When the ZTRUNC command, described in Chapter 2, performs
parameter type checking, there may be an error in the parameter list specified in the
DAPL command file. The ZTRUNC command expects two PIPE parameters and one
VARIABLE parameter:

PIPES P1,P2
VARIABLE V1,V2
PDEF A
ZTRUNC (P1)
ZTRUNC (V1,V2,P2)
END

The parameter errors in this DAPL file cause param_processparam_processparam_processparam_process to generate the
following error messages:

*** ERROR 1215: ZTRUNC - too few parameters
*** ERROR 1214: ZTRUNC - parameter 1 - 'V1' should not be a
word variable

Note that each error message identifies the command detecting the error, and provides
additional information for diagnosing the problem.



24 Using the Data Acquisition Runtime Library

Advanced Parameter Checking

Some custom commands permit optional parameters or several different combinations
of parameter types. An example of this is the COPY command built into DAPL. This
command allows either word pipe or long pipe parameters. In addition, from two to
thirty-three parameters can be specified.

Complex parameter lists can be checked with param_processparam_processparam_processparam_process. The function
param_processparam_processparam_processparam_process allows the specification of a minimum and a maximum number of
allowed parameters, as well as information about possible parameter types. When
more than one parameter type is valid, use the C bitwise “or” operation to combine all
the valid types. For example, a custom command may have the following parameter
requirements:

• accept from two to four parameters
• the first parameter must be a vector
• the next parameter can be any length integer variable
• the next parameter can be a trigger or a word constant
• the last parameter must be a word pipe

The custom command’s parameters can be checked as follows:

#include <cdapcc.h>
void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 2, 4,
T_VECTOR,
T_VAR_W | T_VAR_L,
T_TRIGGER | T_CONST_W,
T_PIPE_W);

After parameter processing, a command can perform any number of additional checks.
In the above example, it might be necessary for the second parameter to be type
T_VAR_W when the third parameter is type T_TRIGGER. The param_typeparam_typeparam_typeparam_type function is
useful for analyzing such cases. If the supplementary tests detect an error condition,
the function param_errorparam_errorparam_errorparam_error can be used to generate a generic error message, or the
function param_error_msgparam_error_msgparam_error_msgparam_error_msg can be used to generate a more specific message. When
a custom command task calls param_errorparam_errorparam_errorparam_error, the task terminates with the message:

*** ERROR 1217: <name> - parameter error



Using the Data Acquisition Runtime Library 25

When a custom command task calls param_error_msgparam_error_msgparam_error_msgparam_error_msg, the task terminates with the
message:

*** ERROR 1236: <name> - parameter <nn> - <description>

For example, suppose that custom command XCOM executes the following:

if ( (param_type(plib,2) != T_VAR_W) &&
     (param_type(plib,3) == T_TRIGGER) )
{
    /* terminate task with message */
    param_error_msg(pe_TypeInconsistent,3);
}

The corresponding error message is:

*** ERROR 1236: XCOM - parameter 3 - type inconsistent

Functions param_processparam_processparam_processparam_process, param_errorparam_errorparam_errorparam_error, and param_error_msgparam_error_msgparam_error_msgparam_error_msg are sensitive to
the setting of the ERRORQ option in DAPL. If ERRORQ is on and an error is detected,
both functions suppress error message printing and set the value of ERRORQ to a
nonzero error code.

The following example illustrates the use of param_typeparam_typeparam_typeparam_type in a custom command that
accepts both word and long DAPL constants. A DAPL constant can be either a word
constant or a long constant. Sometimes it is convenient for a custom command
parameter to accept either constant type. A number represented by a 16-bit word is
passed to the custom command as a word constant. A number represented by a 32-bit
word is passed as a long constant.

The following code fragment from the example custom command CPRINT.C uses
param_typeparam_typeparam_typeparam_type to determine how to assign the value of a constant input parameter to a
long integer variable:



26 Using the Data Acquisition Runtime Library

#include <cdapcc.h>
void main (PIB **plib)
{
void **argv;
int argc;
long val;
argv = param_process (plib, &argc, 1, 1,
                      T_CONST_W | T_CONST_L);

if (param_type(plib,1) == T_CONST_W)
    val = (long int) *(int *) argv[1];
else
    val = *(long int *) argv[1];
  .
  .
  .

This example accepts a single parameter that can be a word constant or a long
constant. The param_typeparam_typeparam_typeparam_type function detects the parameter type. If the parameter is a
pointer to a word constant, the parameter pointer is cast to a word constant pointer,
de-referenced, and the word value is cast to a long integer. The long integer then is
assigned to the variable val. If the parameter is a pointer to a long constant, the
parameter pointer is cast to a pointer to a long integer. Then, the pointer is de-
referenced and the long word value is assigned to val.



Using the Data Acquisition Runtime Library 27

Variables and Constants

DAPL provides access to the special VARIABLE and CONSTANT values defined in a
DAPL command file. A constant is defined in DAPL by an explicit number value in a
parameter list or by a reference to a name defined by the CONSTANT command.
Variables are defined in DAPL by the VARIABLE command.

Because a constant value may be used by several tasks, a DAPL constant must never
be modified by a custom command. One way to enforce this requirement is to use the
special integer type CONSTANT defined in the file CDAPCC.H rather than an ordinary
int type. The CONSTANT type adds a const qualifier to the ordinary int type,
warning the compiler not to allow this value to be modified. An alternative is to copy
the value of the constant to an auto or static variable in the custom command.

DAPL allows more than one task to access its VARIABLE values. These special
variables are declared in a custom command with the type VAR or LVAR. These types
are defined in the file CDAPCC.H. They have a volatile type qualifier. This disables
certain compiler optimizations that are invalid for variables shared by multiple tasks.

Sometimes a DAPL variable is used to establish initial values when a task starts. In
this case, it is convenient to fetch the value of the DAPL variable once, assigning it to
a local work variable. In other cases, when it is important to detect changes in the
variable value, it is essential to access the variable value through a pointer. For
example, suppose that vlimit is a pointer to a DAPL variable, and limit is a local
integer variable:

limit = *vlimit;
while (1) {
...
if (limit>10) {
... /* value of limit never changes */
}
if (*vlimit>10) {
... /* value of *vlimit may change */
}
} /* end while */

In any multitasking system, multiple tasks can sometimes attempt to simultaneously
access a shared variable. This leads to problems if one task attempts to read the shared
variable while another task has partially written a new value to that variable. The
functions var32_getvar32_getvar32_getvar32_get and var32_setvar32_setvar32_setvar32_set avoid task preemption during the fetch and
write operations respectively, avoiding this problem.



28 Using the Data Acquisition Runtime Library

Vectors

Vectors defined by the DAPL command VECTOR can contain data of type short int
or long int. Because a vector defined by DAPL is a special data type, DAPL
provides special means for determining the properties of the data and addressing the
data array. Two mechanisms are used: parameter type checking and special functions.

A task parameter for a vector structure has type VECTOR. A vector parameter is
generic in the same manner that a parameter for a PIPE structure is generic.  The
properties of the VECTOR structure can be tested during parameter processing by the
param_process function to verify that the correct data type is present, using type
code T_VECTOR_W or T_VECTOR_L.  After that, the parameter can be extracted and
assigned to a VECTOR variable.

Note: 32-bit long vectors and T_VECTOR_L are available only with DAPL 2000.

The following code tests for a task parameter list with a single long integer vector, and
extracts the vector parameter to a local variable:

VECTOR * vect;
argv = param_process(plib, &argc, 1, 1, T_VECTOR_L);
vect = (VECTOR *) argv[1];

Once the parameter has been extracted from the parameter list, special functions can
be used to determine properties of the vector data. The functions for evaluating vector
properties are:

 vector_lengthvector_lengthvector_lengthvector_length determine the number of items in the vector
 vector_widthvector_widthvector_widthvector_width determine the storage size for each vector item
 vector_typevector_typevector_typevector_type determine the data type code for the stored items
 vector_startvector_startvector_startvector_start obtain a pointer to the first item

Note: vector_typevector_typevector_typevector_type and vector_startvector_startvector_startvector_start are available only with DAPL 2000.

The length and storage location information are available only using the special
functions. The other information also can be derived from task parameter information,
but sometimes the special functions are more convenient.  For example, suppose that a
custom command can accept a vector with either short or long int data. The
following code example defers the test of vector type to a later part of the program:



Using the Data Acquisition Runtime Library 29

VECTOR * vect;
int   vect_len;
argv = param_process(plib, &argc, 1, 1, T_VECTOR_W |
T_VECTOR_L);
vect = (VECTOR *) argv[1];
...
vect_len = vector_length(vect);
if ( vector_type(vect) == T_VECTOR_W )
        process vect_len items as short int ;
else
        process vect_len items as long int ;

Continuing this same example, the amount of storage required to contain the vector
data can be computed as follows:

int  vect_size;
vect_size = vector_length(vect) * vector_width(vect) ;

Contents of a VECTOR as defined in the DAPL file are available to multiple tasks, and
should not be altered.  One way to protect against accidentally changing vector data is
to declare the contents to be type CONSTANT or LCONSTANT rather than int or long.
Again continuing the example, a pointer to the array of long int data values might
be constructed using the following code:

LCONSTANT  * vect_data;
vect_data = (LCONSTANT *) vector_start(vect);



30 Using the Data Acquisition Runtime Library

Auxiliary Functions

After calling  param_processparam_processparam_processparam_process, a custom task receives a list of pointers to its
parameters. According to the declaration for the list pointer (called argv in the
examples), the parameters are pointers to type void. This means that the pointers
must be cast into pointers of the appropriate types before the data can be accessed.

One useful technique for structuring a custom command and organizing parameters is
calling an auxiliary function. The formal parameter list of the auxiliary function is
used to assign a mnemonic name and a correct type to each of the custom task’s
parameters. Each of the pointers from the parameter list is extracted and cast into an
argument to the auxiliary function. This technique is particularly useful for simpler
custom commands having a minimum of parameter checking requirements.

The following custom command calls the auxiliary function pval after checking
parameters.

#include <cdapcc.h>
void pval (PIPE *p, VAR *v);

void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 2, 2,
                  T_PIPE_W, T_VAR_W);
pval ((PIPE *) argv[1], (VAR *) argv[2]);
}

void pval (PIPE *p, VAR *v)
{
/* perform processing here ... */
}

Most of the examples shown in this document call an auxiliary function whose name is
the same as the name of the custom command.



Using the Data Acquisition Runtime Library 31

Initializations and Allocations

Initializations must be performed after a custom command has extracted and checked
its parameters. Many of these initializations are straightforward. All of them are
important.

The most important initializations are for PIPE, TRIGGER and PBUF structures. More
information will be provided about these structures later. For now, the essential point
is making sure that every data structure is initialized before performing the real time
processing.

Each initialization function returns a value. Typically, this is a pointer to a DAPL
structure of some kind. The pointer value must be stored so that it can be used during
later operations.

A custom command must open each pipe before performing pipe I/O. The function
pipe_openpipe_openpipe_openpipe_open opens a pipe. This function accepts a pipe pointer and a flag indicating
whether the pipe will be read or written. The file CDAPCC.H defines two flags for this
purpose: P_READ for input and P_WRITE for output. Almost all custom commands use
the pipe_openpipe_openpipe_openpipe_open function.

The following example shows an initialization of a pipe for reading items individually:

PIPE *p;
.
.
pipe_open (p, P_READ);

A custom command that operates on blocks of data rather than individual values must
perform two initializations for each pipe. First, the pipe_openpipe_openpipe_openpipe_open operation described
above must be performed. Then, a structure called a pipe buffer must be allocated and
initialized. This second step is performed using the function  pbuf_openpbuf_openpbuf_openpbuf_open, which
returns a pointer to a PBUF structure.  Each PBUF structure is uniquely associated with
the one task that allocates it. The PBUF structure contains information about the
number of data values currently available, the location of the storage buffer for these
data, the minimum number of values to be placed into the buffer, and the maximum
number of values to be placed into the buffer. pbuf_openpbuf_openpbuf_openpbuf_open supplies default values,
which will be satisfactory in most cases. More information about using the PBUF
structure is provided in the section on blocked pipe operations.



32 Using the Data Acquisition Runtime Library

The following shows a typical initialization for reading blocks of up to 200 items.

#define BUF_SIZE 200
PIPE *p1;
PBUF *inbuf;
.
.
pipe_open (p1, P_READ);
inbuf = pbuf_open (p1, BUF_SIZE);
.
.

Tasks which issue or receive software trigger assertions must initialize the TRIGGER
structure using the special function trigger_opentrigger_opentrigger_opentrigger_open. This function is the same as
pipe_openpipe_openpipe_openpipe_open, except that it requires a trigger parameter rather than a pipe parameter.
See Chapter 5 for information about software trigger initialization.

Sometimes a task requires relatively large blocks of data storage. Such a task can use
the function rallocrallocrallocralloc to allocate a working memory area from the Data Acquisition
Processor bulk memory. The function rallocrallocrallocralloc accepts the number of bytes of memory
to allocate, and returns a pointer to the allocated memory. If insufficient memory is
available, an error message is printed and the task halts. (This rarely occurs in
practice, because there usually is not any data stored in the Data Acquisition Processor
before tasks are started.)

Some of the more specialized initializations, such as PID control or DSP
computations, are discussed in detail in later chapters.



Using the Data Acquisition Runtime Library 33

Pipe Read and Write Routines

Once a task begins its real time processing loop, it typically receives data from pipes,
and places its results into pipes.

Some custom commands operate on a small amount of data. They get the data,
perform their operations quickly, then quietly wait for the next data to arrive. Other
data acquisition tasks need to process large amounts of data efficiently. The pipe
operations described in this section apply primarily to the first case. However, most of
fundamental principals discussed in this section apply in both cases. Be sure to have a
good understanding of this section before covering the section on blocked pipe
operations later in this chapter.

Two important system routines are pipe_getpipe_getpipe_getpipe_get and pipe_putpipe_putpipe_putpipe_put. The function
pipe_getpipe_getpipe_getpipe_get removes one data value from a DAPL pipe. If a pipe is empty when
pipe_getpipe_getpipe_getpipe_get is called, the calling task goes to sleep until the pipe contains data. The
function pipe_get_floatpipe_get_floatpipe_get_floatpipe_get_float is the same as pipe_getpipe_getpipe_getpipe_get, except that it obtains a value
from a floating point pipe.

The function pipe_putpipe_putpipe_putpipe_put places a data value into a pipe. The function
pipe_put_floatpipe_put_floatpipe_put_floatpipe_put_float is equivalent to pipe_putpipe_putpipe_putpipe_put except that it puts a value into a
floating point pipe. If the pipe is full, the calling task either suspends operation until
the associated pipe has room, or throws out the data and returns immediately, as
selected by the WAIT/NOWAIT parameter in the DAPL PIPE command. The default
behavior for a DAPL pipe is WAIT.

Previous examples illustrated the use of param_processparam_processparam_processparam_process and an auxiliary function
named pval. The functions pipe_openpipe_openpipe_openpipe_open and pipe_getpipe_getpipe_getpipe_get can be used to create a
custom command with the same behavior as the DAPL predefined PVALUE command:



34 Using the Data Acquisition Runtime Library

/* PVAL (p, v)
*   - keeps variable 'v' updated to the most recent
*     value in pipe 'p'
*/
#include <cdapcc.h>
void pval (PIPE *p, VAR *v);

void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 2, 2,
                      T_PIPE_W, T_VAR_W);
pval ((PIPE *) argv[1], (VAR *) argv[2]);
}
void pval (PIPE *p, VAR *v)
{
pipe_open (p, P_READ);
while (1) {
    *v = (int)pipe_get(p);
}
}

Most custom commands can be implemented using only the four system routines:
param_processparam_processparam_processparam_process, pipe_openpipe_openpipe_openpipe_open, pipe_getpipe_getpipe_getpipe_get, and pipe_putpipe_putpipe_putpipe_put. However, more efficient
processing is often possible using the blocked pipe operations described later in this
chapter.



Using the Data Acquisition Runtime Library 35

Application Examples Using Pipes

The following custom command implements a simplified version of the predefined
COPY command. It reads integer data from an input pipe and puts copies of the data
into two output pipes.

/* COPY2 (p1, p2, p3)
*   - places copies of data from pipe 'p1' into
*     pipes 'p2' and 'p3'
*/
#include <cdapcc.h>
void copy2 (PIPE *p1, PIPE *p2, PIPE *p3);

void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 3, 3,
            T_PIPE_W, T_PIPE_W, T_PIPE_W);
copy2 ((PIPE *) argv[1], (PIPE *) argv[2],
      (PIPE *) argv[3]);
}
void copy2 (PIPE *p1, PIPE *p2, PIPE *p3)
{
long int d;
pipe_open (p1, P_READ);
pipe_open (p2, P_WRITE);
pipe_open (p3, P_WRITE);
while (1) {
    d = pipe_get (p1);
    pipe_put (p2, d);
    pipe_put (p3, d);
}
}



36 Using the Data Acquisition Runtime Library

This is a complete custom command application. The compile and download
procedure given in Chapter 2 can be used to load the compiled command into the Data
Acquisition Processor for execution. Once the COPY2 custom command is
downloaded, a DISPLAY command can be used from DAPview to verify that COPY2 is
defined:

#display commands
  COPY2 stacksize=1000
#

Note: A RESET command does not erase custom command definitions. RESET can
be used between DAPL applications without requiring redefinition of custom
commands. The RESTART command removes custom command definitions. The
ERASE command erases a selected custom command definition.

A useful way of testing custom command code is to define a custom task and present
the task with test data using the FILL command. To test COPY2 using Microstar
Laboratories DAPview program, enter the following DAPL commands:

#pipes p1,p2,p3
#pdef a
  >copy2 (p1,p2,p3)
  >format (p2,p3)
  >end
#start a
#fill p1 4 5 6 7

The FILL command places data into pipe P1. If the custom command is working
correctly, the custom command places copies of the data into pipes P2 and P3, which
causes FORMAT to print:

4 4
5 5
6 6
7 7

The next example computes a running average over a stream of data values. In
addition to the pipe initialization, input, and output functions, this command uses the
function rallocrallocrallocralloc to obtain a region of temporary storage for data that has been read.
The running average is defined as the sum of the last n data values divided by n. The
memory array is used as a circular buffer to store the last n data values.



Using the Data Acquisition Runtime Library 37

/* RAVE (p1, n, p2)
*  - compute the running average of 'n' points
*    from pipe 'p1' and put results into pipe
*    'p2'
*/
#include <cdapcc.h>
void rave(PIPE *in_pipe, const int n, PIPE *out_pipe);
void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 3, 3,
             T_PIPE_W, T_CONST_W, T_PIPE_W);
rave ((PIPE *) argv[1], *(const int *) argv[2],
      (PIPE *) argv[3]);
}
void rave (PIPE *in_pipe, const int n, PIPE *out_pipe)
{
int I;
int *d, *max_d;
long int sum = 0;
pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);
d = (int *) ralloc (2*n);
/* initialize the data array with n values */
for (i=0; i<n; i++) {
   *d = (int)pipe_get(in_pipe);
   sum += *d;
   d++;
}

max_d = d;

/* write new values over the oldest data */
while (1) {
pipe_put (out_pipe, sum / n);
if (d == max_d)
d -= n;
sum -= *d;
*d = (int)pipe_get (in_pipe);
sum += *d;
d += 1;
}
}



38 Using the Data Acquisition Runtime Library

Text Transfer

Several system routines provide text string formatting functions. The function printfprintfprintfprintf
formats and prints a series of characters and values. The output of printfprintfprintfprintf is sent to
the output pipe $SYSOUT. The function fprintffprintffprintffprintf provides the same formatting
capabilities as printfprintfprintfprintf except that the resulting string is sent to a specified byte output
pipe. The function sprintfsprintfsprintfsprintf performs similar formatting, storing the result in a string
rather than writing to a pipe. The format conversions are compatible with the Standard
C Library. For more information about format conversions, see the descriptions of
function printfprintfprintfprintf in the compiler runtime library manual and Chapter 14 in this
document.

The following custom command reads data from a word pipe and prints the data
values with text:

/* PRT (p1)
*  - reads data from pipe 'p1', formats data
*    into a string with text and sends the
*    string to the PC
*/
#include <cdapcc.h>
void print_data (PIPE *p);
void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 1, 1, T_PIPE_W);
print_data ((PIPE *) argv[1]);
}

void print_data (PIPE *p)
{
    pipe_open (p, P_READ);
    while (1)
    {        printf ("Data = %d \n", pipe_get(p));
    }
}

Two additional routines provide transmission of simple strings to output pipes. The
function sendsendsendsend sends a string to the output pipe $SYSOUT. The function fsendfsendfsendfsend sends a
string to a specified output pipe. These functions have the side effect of altering the
contents of the string.



Using the Data Acquisition Runtime Library 39

Numbers can be extracted from a message text using the function sscanfsscanfsscanfsscanf. This
function can be dangerous, so verify that the conversion codes and the data pointers in
the parameter list match exactly.

Blocked Pipe Operations

Each pipe ‘get’ or ‘put’ operation requires operating system overhead. This overhead
limits the maximum rate at which data values can be transferred into and out of pipes.
Blocked pipe operations increase the pipe input/output rate by operating on blocks of
data. A blocked get operation reads a specified number of data values from a pipe into
a memory array. A blocked put operation writes data from a memory array into a pipe.
Blocked operations using large blocks are typically ten to twenty times faster than
nonblocked operations. In most cases, the most efficient processing strategy is to fetch
whatever data are available, up to some maximum amount, process that block, and
then repeat for the next block of data.

As discussed in the section on command initialization, the pipe to be accessed using a
blocked operation must use the function pipe_openpipe_openpipe_openpipe_open to initialize the pipe, and then
function pbuf_openpbuf_openpbuf_openpbuf_open to allocate and initialize a PBUF structure for the opened pipe.
The function pbuf_openpbuf_openpbuf_openpbuf_open can also allocate a storage array of the correct size,
automatically, and install it in the PBUF structure.

When real-time processing begins, the function pbuf_getpbuf_getpbuf_getpbuf_get reads data from the
associated pipe into the storage array of the task’s pipe buffer, as in the following
example:

PIPE *p1;
PBUF *inbuf;
.
.
pipe_open (p1, P_READ);
inbuf = pbuf_open (p1, BUF_SIZE);
.
.
pbuf_get (inbuf);
/* process data array values here... */

The function pbuf_putpbuf_putpbuf_putpbuf_put writes data from a task’s pipe buffer into the associated
output pipe.  Before calling this function, the custom command code must place the
data to be written into the storage array, and call the function pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt to
specify how many items are present.  The following C code writes a block of data to a
pipe:



40 Using the Data Acquisition Runtime Library

PIPE *p2;
PBUF *outbuf;
int  item_count;
.
.
pipe_open (p2, P_WRITE);
outbuf = pbuf_open (p2, BUF_SIZE);
.
.

/* process data array values here ... */
pbuf_set_cnt(outbuf,item_count);
pbuf_put (outbuf);

The Developer's Toolkit for DAPL provides functions for accessing several important
internal fields of the pipe buffer (PBUF) structure. Remember that the pipe buffer
belongs to a single task, and it does not interfere with other tasks when the following
are used properly:

• The function pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr returns a pointer to the data array assigned to
the PBUF structure.

• The function pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr assigns a data array to a PBUF structure.
• The function pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt reports the number of data values present in the pipe

buffer storage array. This function is particularly useful after data has been fetched
into the storage array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

• The function pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt specifies the number of data values that have been
placed into the storage array. This is typically used before calling the function
pbuf_putpbuf_putpbuf_putpbuf_put.

• The function pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt reports the maximum number of values that the
function pbuf_getpbuf_getpbuf_getpbuf_get is allowed to fetch from a pipe.

• The function pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt establishes the maximum number of values
that the function pbuf_getpbuf_getpbuf_getpbuf_get is allowed to fetch from a pipe. This function is used
mostly for initialization.

• The function pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt reports the minimum number of values that
must be read into pipe buffer storage before the pbuf_getpbuf_getpbuf_getpbuf_get function returns to the
caller.

• The function pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt establishes the minimum number of values that
must be read into pipe buffer storage before the pbuf_getpbuf_getpbuf_getpbuf_get function returns to the
caller. This function is used mostly for initialization.

The data minimum and maximum count bounds, established by the pbuf_openpbuf_openpbuf_openpbuf_open
function or by the pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt and pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt functions, are used



Using the Data Acquisition Runtime Library 41

by pbuf_getpbuf_getpbuf_getpbuf_get to determine how many values should be read into the data array. If the
input pipe contains less than the minimum number of data values, the function
pbuf_getpbuf_getpbuf_getpbuf_get suspends the task and does not return until sufficient data values are
available from the input pipe. The function pbuf_getpbuf_getpbuf_getpbuf_get will not transfer more than the
specified maximum number of values from the input pipe to the PBUF data storage
array. After completing the transfer, the function pbuf_getpbuf_getpbuf_getpbuf_get sets the current number
of samples stored in the storage array, so that the next call to the function
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt can report this number to the caller.

The pbuf_putpbuf_putpbuf_putpbuf_put operation takes from the PBUF structure data array the number of
values specified by the current data count, placing the values into the associated pipe.
The pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt and pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt fields are ignored. After copying
the values from the PBUF storage buffer into the pipe, the pbuf_putpbuf_putpbuf_putpbuf_put operation sets
the PBUF data count to zero.

Both the minimum and the maximum data count fields are initialized by pbuf_openpbuf_openpbuf_openpbuf_open,
but may be reprogrammed after pbuf_openpbuf_openpbuf_openpbuf_open is called.

The following C code illustrates reading a block of data values using a pbuf_getpbuf_getpbuf_getpbuf_get
operation, and referencing individual data values in the PBUF storage area. A pointer
to this storage is obtained using the pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr function:

int count;
int *p;
.
.
pbuf_get (inbuf);
count = pbuf_get_cnt(inbuf);
p = pbuf_get_data_ptr(inbuf);
for (i = 0; i < count; I++)
printf("%d\n", p[i]);

There are two advanced techniques that are sometimes useful with blocked pipe input
and output. The first is setting the pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt field to zero. When this is
done, the pbuf_getpbuf_getpbuf_getpbuf_get function does not wait for data to arrive, but instead returns
whether or not any data is present in the PBUF storage. (Be sure to test for the case
that the data count is set to zero upon return.) This technique should be used only
when a single custom command must coordinate among several internal processes,
and cannot afford to delay while waiting for data to arrive. The second technique is
allocating a PBUF with a zero-size storage area. This means that there is no storage
array associated with this PBUF -- at least not at first. The initialization is completed
later by using the function pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr to assign a storage array, and
adjusting the maximum and minimum data counts accordingly using the



42 Using the Data Acquisition Runtime Library

pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt and pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt functions. In this way, it is possible,
for an input pipe and an output pipe to share the same storage area.

Blocked pipe input and output are illustrated by the BCOPY2 custom command. The
BCOPY2 command copies the contents of an input pipe into two output pipes. BCOPY2
is functionally equivalent to the unblocked COPY2 command, illustrated earlier in the
chapter, but it transfers data much  faster. It uses the buffer-sharing technique
described above for the two output pipes.

/*  BCOPY2 (p1, p2, p3)
*      - places copies of data from pipe 'p1' into
*         pipes 'p2' and 'p3'
*/
#include <cdapcc.h>
void bcopy2 (PIPE *p1, PIPE *p2, PIPE *p3);
#define BUF_SIZE 128

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 3, 3, T_PIPE_W,
                                  T_PIPE_W, T_PIPE_W);
    bcopy2 ((PIPE *) argv[1], (PIPE *) argv[2],
            (PIPE *) argv[3]);
}



Using the Data Acquisition Runtime Library 43

void bcopy2 (PIPE *p1, PIPE *p2, PIPE *p3)
{
    PBUF *inbuf, *outbuf1, *outbuf2;
    char *databufin, *databufout;
    int  bufcount;

    pipe_open (p1, P_READ);
    pipe_open (p2, P_WRITE);
    pipe_open (p3, P_WRITE);

    inbuf   = pbuf_open (p1, BUF_SIZE);
    outbuf1 = pbuf_open (p2, BUF_SIZE);
    outbuf2 = pbuf_open (p3, 0);

    databufin  = pbuf_get_data_ptr(inbuf);
    databufout = pbuf_get_data_ptr(outbuf1);
    pbuf_set_data_ptr(outbuf2,databufout);
    pbuf_set_max_cnt(outbuf2,BUF_SIZE);

    while (1)
    {
        pbuf_get (inbuf);
        bufcount = pbuf_get_cnt(inbuf);

        memcpy (databufout, databufin,
            bufcount*sizeof(int));
        pbuf_set_cnt(outbuf1,bufcount);
        pbuf_set_cnt(outbuf2,bufcount);
        pbuf_put (outbuf1);
        pbuf_put (outbuf2);
    }
}

Note that the minimum data count for inbuf is set to one by default when inbuf is
opened. This ensures that any available data values are continuously processed, even
if the input pipe contains less than BUF_SIZE entries. The memcpymemcpymemcpymemcpy function requires a
number of bytes, rather than a number of items, so the multiplier sizeof(int) is
used. Note that the number of output items is always updated before performing the
write operation. The two output pipes share the same data buffer, so only one copy
operation is performed.

Another example of blocked pipe operations is a more efficient version of the ZTRUNC
command. This command reads and processes data in blocks rather than a single value
at a time, with a fixed lower data bound of zero. Notice that the defaults, minimum



44 Using the Data Acquisition Runtime Library

data count one and maximum data count BUF_SIZE, are used both for the input and
the output pipes.

/*  BZTRUNC (p1, p2)
*      - read data from pipe 'p1', truncate negative numbers
*         to zero, and output data to pipe 'p2'
*/
#include <cdapcc.h>
#define  BUF_SIZE 128
void  bztrunc (PIPE *in_pipe, PIPE *out_pipe);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 2, 2,
             T_PIPE_W, T_PIPE_W);
    bztrunc ((PIPE *) argv[1], (PIPE *) argv[2]);
}

void bztrunc (PIPE *in_pipe, PIPE *out_pipe)
{
    PBUF *inbuf, *outbuf;
    int  datacount, *datain, *dataout;
    int  i, tmp;

    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);
    inbuf = pbuf_open (in_pipe, BUF_SIZE);
    outbuf = pbuf_open (out_pipe, BUF_SIZE);
    datain  = pbuf_get_data_ptr(inbuf);
    dataout = pbuf_get_data_ptr(outbuf);



Using the Data Acquisition Runtime Library 45

    while (1)
    {
        pbuf_get(inbuf);
        datacount = pbuf_get_cnt(inbuf);

        for (i=0; i<datacount; I++)
        {
            tmp = datain[i];
            if (tmp < 0)  dataout[i] = 0;
            else          dataout[i] = tmp;
        }
        pbuf_set_cnt(outbuf,datacount);
        pbuf_put(outbuf);
    }
}

Other Pipe Routines

The function pipe_num_completepipe_num_completepipe_num_completepipe_num_complete accepts a pipe pointer and returns the number of
data values currently stored in the pipe, up to a specified limit. The function
pipe_numpipe_numpipe_numpipe_num is a useful alternative for determining whether some data are available,
when an accurate count is not required.

The function pipe_widthpipe_widthpipe_widthpipe_width accepts a pipe pointer and returns the width of the pipe, in
bytes. A word pipe has a width of two bytes and a long pipe or a float pipe has a width
of four bytes.

The function pipe_rempipe_rempipe_rempipe_rem efficiently removes data from a pipe. This is sometimes
useful when it is determined that there is a large amount of data which does not
require processing. This routine normally is not needed at the end of processing, since
the DAPL STOP command automatically empties all system pipes.



46 Using the Data Acquisition Runtime Library

Task Control Routines

When a task is executing, the task is competing for CPU time with all other active
tasks. When the function task_switchtask_switchtask_switchtask_switch is called, the processor temporarily suspends
the current task. Other active tasks are given CPU time before the CPU returns to the
original task. If a task is waiting for an event, the task_switchtask_switchtask_switchtask_switch system call should be
used to release the CPU so that other tasks can be served.

Suppose, for example, one task sets the value of a global variable and another task
waits for the global variable to change to a nonzero value. (This technique can be used
to implement intertask message passing via global variables.)

If the variable pointer is v, one version of the message receiving code is:

while (!*v)  /* do nothing */ ;

This code is inefficient. The task wastes CPU time waiting for the value of the
variable to change, but the variable value cannot change while this task is executing
the loop.  A better solution is for the task to release the CPU to other tasks before
rechecking the value of the variable:

while (! *v)
task_switch() ;

The signaling task usually performs a task_switchtask_switchtask_switchtask_switch also. After the signaling task
changes the value of the variable, a task switch forces the CPU to immediately give
the receiving task an opportunity to recognize the message.

Occasionally, execution of a custom task simply needs to be stopped. An inefficient
way of doing this would be:

while (1)
;

A better way is to call the function exitexitexitexit; the task then is terminated and no longer
uses any CPU time.



Using the Data Acquisition Runtime Library 47

DAC Access

The Data Acquisition Processor has two on-board digital-to-analog converters
(DACs). A custom command can send a value to a DAC by calling the function
dac_outdac_outdac_outdac_out. The first parameter specifies the DAC number (0 or 1). The second
parameter specifies the data value to write to the DAC. The data value is interpreted
as a 16-bit number. See the chapter ‘Voltages and Integers’ in the DAPL Manual for
an explanation of the relationship between 16-bit numbers and analog voltages.

If external analog output expansion hardware is connected to the Data Acquisition
Processor, DAC numbers greater than one may be specified in dac_outdac_outdac_outdac_out. DAC output
expansion is enabled using the DAPL OUTPORT command.

Note: The function dac_outdac_outdac_outdac_out provides a low-latency method of updating the
digital-to-analog converter. Because the DAPL operating system is multitasking,
dac_outdac_outdac_outdac_out updates the DAC in an asynchronous manner. For precise timing between
DAC updates, it is recommended that a custom command write DAC data to an
output channel pipe. An output procedure then can read the channel data and update
the DAC synchronously.

Digital Output Lines

The Data Acquisition Processor provides sixteen digital outputs. To control these
lines, call digital_outdigital_outdigital_outdigital_out. The first parameter of digital_outdigital_outdigital_outdigital_out specifies the port
number of the on-board digital output port. This number is zero. The second
parameter specifies a 16-bit data value that is written to the digital output port.

Two additional functions, digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit and digital_toggle_bitdigital_toggle_bitdigital_toggle_bitdigital_toggle_bit, allow
control of individual bits of the digital output port.

If external digital output expansion hardware is connected to the Data Acquisition
Processor, digital port numbers greater than zero and digital bit numbers greater than
sixteen may be specified by the digital output functions. Digital output expansion is
enabled using the DAPL OUTPORT command.

Note: The function digital_outdigital_outdigital_outdigital_out provides a low-latency method of updating the
digital output port. Because the operating system is multitasking, digital_outdigital_outdigital_outdigital_out
updates the digital port in an asynchronous manner. For precise timing of digital
output port updates, it is recommended that a custom command write digital output
data to an output channel pipe. An output procedure then can read the channel data
and update the digital output port synchronously.



48 Using the Data Acquisition Runtime Library

Real Time Clock

A custom command may need to determine the current time or may need to pause for
a specified period of time. The function sys_get_timesys_get_timesys_get_timesys_get_time returns the number of
milliseconds since the Data Acquisition Processor was powered on. The function
task_pausetask_pausetask_pausetask_pause causes the current task to pause for a specified number of milliseconds.

The following custom command illustrates the use of task_pausetask_pausetask_pausetask_pause to generate a one
Hertz square wave at the least significant bit of the digital output port..

/*  SGEN
*      - generates a square wave on the digital
*         output port
*/
#include <cdapcc.h>
void gen_square (void);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 0, 0);
    gen_square ();
}

void gen_square (void)
{
    while (1)
    {
        digital_out (0, 0);
        task_pause (500);
        digital_out (0, 1);
        task_pause (500);
    }
}

Note: The real-time clock on the DAP 800, DAP 1200e, and DAP 2400e is derived
from the CPU clock and provides good long-term accuracy. The DAP 2400 real-
time clock is derived from the DAPL time-slicing clock. Depending on system load,
this clock can vary by as much as ten percent. DAP 2400 applications requiring
long-term timing accuracy should perform timing by counting acquisition samples
generated by the input procedure sampling clock.



Software Triggering Support 49

5. Software Triggering Support

This chapter discusses special functions and useful programming techniques for
building custom commands for software triggering.

The Developer's Toolkit for DAPL provides a set of special system routines which
give access to all software triggering features of the DAPL 2000 operating system.

Most applications can use the basic triggering commands built into the DAPL 2000
operating system, and do not need extended triggering capability. For example, a
simple threshold (LIMIT) might be adequate to determine whether something
significant is present in a data stream. Other systems might need to apply a more
complex analysis to identify important data. When the flexibility of a built-in DAPL
command is needed, but triggering capabilities of built-in commands are not
sufficient, custom triggering commands should be considered.

There is a design tradeoff between optimizing one application and building a
generally useful component. Individual applications can usually apply ordinary
programming techniques in a custom command to avoid software triggering. This does
not necessarily make the programming task less complex. It achieves equivalent
results, gaining efficiency by giving up flexibility.

Triggering is somewhat complex, because it combines:

• analysis of a data stream to recognize special events
• communication of these events between tasks
• processing of a data stream in response to the special events

Software triggering is a powerful intertask signaling and data selection capability.
Before developing custom commands that use software triggering, a review of the
software triggering material in the DAPL manual is strongly recommended.
Familiarity with LIMIT and WAIT commands and other triggering commands is also
helpful.



50 Software Triggering Support

Establishing the Connection

A typical trigger configuration consists of one task that asserts a trigger and one or
more tasks that wait for trigger assertions. These are called the signaling task and the
receiving tasks, respectively. Sometimes “asserting a trigger” is described as “writing
a trigger,” because information about an event is written into a trigger structure.
Similarly, “waiting for assertions” is sometimes called “reading a trigger” because
information about an event is extracted from the trigger structure.

Each task that uses a software trigger is associated directly or indirectly with a data
stream. A signaling task reads and analyzes data from its data stream, and writes
trigger assertion information into the trigger. A task responding to the trigger assertion
reads that triggering information, and uses the information to extract the desired
samples from its associated data stream.

A trigger control structure resides in the operating system area, and contains a pipe
and a status field. The pipe is used to queue assertion information. The status field is
used to communicate operating status among trigger readers and writers.

A custom command task first uses the trigger_opentrigger_opentrigger_opentrigger_open function to establish a
connection with a trigger, in much the same manner that a pipe_openpipe_openpipe_openpipe_open command is
used to access a data pipe. When either a trigger receiving or trigger signaling task
calls the trigger_opentrigger_opentrigger_opentrigger_open function, it receives a handle to a system trigger control
structure. This TRIGGER structure is defined by a DAPL TRIGGER command. Though
not directly accessible, the returned handle has the form of a TRIGGER pointer. The
following shows the code to initialize two TRIGGER handles, one for writing and one
for reading:

TRIGGER    *Twrite, *Tread;
...
trigger_open(Twrite,P_WRITE);
trigger_open(Tread,P_READ);



Software Triggering Support 51

Using the Trigger Functions

A trigger’s pipe shares many properties with ordinary data pipes, hence, there are
many similarities between trigger and pipe operations. Assertions placed into the
trigger’s pipe have the form of a 32-bit unsigned number. Continuing the previous
example, the following operations can be used to extract trigger assertion information
from one trigger and copy it into the other:

unsigned long   assertion;
 ...
/* DANGER! */
assertion = trigger_get(Tread);
trigger_put(Twrite,assertion);

Unfortunately, this is not all of the story. The above code has subtle dangers. While it
moves assertion information from one trigger to another successfully, it does not keep
the trigger status fields current. This can cause some serious complications.
Fortunately, there are easy solutions.

The trigger’s status field announces to the DAPL system the sample number of the
most recently processed sample in the associated data stream. Updating the status
indicates that the task has completed all processing associated with the corresponding
sample. Because each sample can be processed only once, the status field is strictly
increasing. Samples are numbered starting with sample 0. This numbering does not
have a direct relationship to the sampling clock, and software triggering can operate
without any active input sampling procedures.

It is essential for both trigger reading and writing tasks to keep the status field current.
Writing an assertion to a trigger automatically updates the status to match the asserted
sample number. For a signaling task with no new assertion, or in all cases for a
receiving task, one of the following two methods can be used to update the trigger
status:

unsigned long  new_status, increment;

/* Method 1 -- Compute a new status number explicitly */
new_status = trigger_get_status(Tread) + increment;
trigger_set_status(Tread,new_status);

/* Method 2 -- Increment the old status number */
trigger_updt_status(Tread,increment);



52 Software Triggering Support

The example above shows code for a receiving task, but the code is similar for a
signaling task when no events are asserted.

If a sample corresponding to a trigger event is detected, a trigger signaling task has
two ways that it can signal the event:

unsigned long  new_event, increment;

/* Method 1 -- Assert at an explicit sample number */
new_event = trigger_get_status(Twrite) + increment;
trigger_put(Twrite,new_event);

/* Method 2 -- Increment the old status and assert*/
trigger_updt_put(Twrite,increment);

Note that the process of fetching the old trigger writer status, updating it, and asserting
the new value is so common that these operations are combined in the function
trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put.

It should be apparent now why using the trigger_gettrigger_gettrigger_gettrigger_get function alone can be
dangerous. If a trigger reader task tries to get an assertion from its trigger structure,
but no assertion is present, the trigger reader task must wait. While the task is waiting,
it does not update its status, and a backlog can occur in the trigger reader’s associated
data pipe. The data backlog can lead to inefficiencies or to a memory overflow
condition.

A solution to this problem is to use the special trigger_waittrigger_waittrigger_waittrigger_wait function, which keeps
the trigger reader’s status current and discards unneeded data as it waits for an
assertion to arrive. When trigger_waittrigger_waittrigger_waittrigger_wait returns, the next sample in the associated
data pipe is the first sample corresponding to the asserted event. The following is a
recommended way to detect a trigger assertion without causing a data backlog:

/* RECOMMENDED! */
unsigned long   assertion;
PIPE   * data_pipe;
...
assertion = trigger_wait(Tread,data_pipe,0,1);

There are some situations, however, when a custom command will not want to wait for
an assertion to arrive. For these situations, the trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate function is
an alternative to the trigger_waittrigger_waittrigger_waittrigger_wait function. Function trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate
returns immediately with a value which is either the first available assertion or the
most current status. To determine which value is received, an extra variable is passed
to the trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate function:



Software Triggering Support 53

int  assert_flag;
...
assertion = trigger_get_immediate(Tread,&assert_flag);
if (assert_flag)
    { /* process the assertion */ }
else

{ /* update status and do other processing */ }

To summarize, the responsibilities of a signaling task which processes data
individually are:

• Call the function trigger_opentrigger_opentrigger_opentrigger_open to initialize the trigger.
• Read a data value from the associated data pipe. Check for triggering conditions.
• Assert each trigger event, placing the corresponding sample number into the

trigger.
• Increment the trigger status by one for each sample scanned from the associated

data pipe without an assertion. The trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status function is useful for
this.

The above process can be described slightly differently for the case where data values
are scanned in blocks:

• Call the function trigger_opentrigger_opentrigger_opentrigger_open to initialize the trigger.
• Read blocks of data from the associated data pipe. For each block, scan through

the data samples testing for triggering conditions.
• Assert each trigger event to place the corresponding sample number into the

trigger.
• Update the trigger status by the number of samples remaining after the last trigger

event is asserted, or by the block size if there are no assertions.

The responsibilities of a receiving task are:

• Call trigger_opentrigger_opentrigger_opentrigger_open to initialize the trigger.
• To obtain the next assertion without waiting, call trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate to

receive either an assertion or a status count. Use or discard data from the
associated data pipe explicitly. Update the trigger status for each item used or
discarded.

• To wait for the next assertion, call trigger_waittrigger_waittrigger_waittrigger_wait. When it returns, take data
values from the input pipe, and update the trigger status for each value taken.

Though dangerous, the trigger_gettrigger_gettrigger_gettrigger_get function is sometimes useful. It can be called
safely if the trigger_numtrigger_numtrigger_numtrigger_num function is called first to verify that a trigger assertion is



54 Software Triggering Support

available. If an assertion is present in the trigger, trigger_gettrigger_gettrigger_gettrigger_get reads that assertion
value, and does not block task execution.

Special Trigger Modes

Some triggering commands might require a trigger with a special operating mode, or
that has a HOLDOFF or other important operating property. The
trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode and the trigger_get_propertytrigger_get_propertytrigger_get_propertytrigger_get_property functions can be used to
verify that the trigger was correctly defined. See the DAPL manual for information
about trigger properties and operating modes.

Triggering Command Examples

This section provides a number of programming examples, showing typical trigger
signaling and receiving tasks.

The following example command, LIMIT2, is a simplified form of theLIMIT
command in the DAPL operating system. LIMIT2 is a signaling task.

/*  LIMIT2 (p1, region, t1)
*      - asserts trigger 't1' when data from pipe
*         'p1' enters 'region'
*/
#include <cdapcc.h>
void limit2 (PIPE *, int, int, int, TRIGGER *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 5, 5, T_PIPE_W,
             T_RFLAG, T_CONST_W, T_CONST_W, T_TRIGGER);
    limit2 ((PIPE *) argv[1], *(const int *) argv[2],
            *(const int *) argv[3], *(const int *) argv[4],
            (TRIGGER *) argv[5]);
}

void limit2 (PIPE *p, int rflag, int low, int high, TRIGGER
*t)
{
    long int   d;
    pipe_open (p, P_READ);
    trigger_open (t, P_WRITE);



Software Triggering Support 55

    while (1)
    {
        d = pipe_get (p);
        if (rflag == R_INSIDE)
        {   /* INSIDE region */
            if   ((d >= low) && (d <= high))
                trigger_updt_put(t,1);
            else
                trigger_updt_status(t,1);
        }
        else
        {   /* OUTSIDE region */
            if  ((d < low) || (d > high))
                trigger_updt_put (t,1);
            else
                trigger_updt_status(t,1);
        }
    }
}

The preceding trigger example can be modified easily to create custom commands that
detect different trigger conditions. It is necessary only to change the ‘if’ statements
that determine whether trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put or trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status is called.
Notice how every sample is accounted for. Either an assertion is posted, or the trigger
is informed that no assertion occurs.

The next example, the WAIT2 command, is a simplified version of the WAIT command
which is part of the DAPL operating system. WAIT2 is a trigger receiving command.



56 Software Triggering Support

/*  WAIT2 (p1, t1, n1, n2, p2)
*      - transfer n1+n2 data values from pipe 'p1'
*         to pipe 'p2' when a trigger assertion
*         occurs in trigger 't1'
*/
#include <cdapcc.h>
void wait2 (PIPE *, TRIGGER *, int, int, PIPE *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 5, 5, T_PIPE_W,
             T_TRIGGER, T_CONST_W, T_CONST_W, T_PIPE_W);
    wait2 ((PIPE *) argv[1], (TRIGGER *) argv[2],
          *(const int *) argv[3], *(const int *) argv[4],
          (PIPE *) argv[5]);
}

void wait2 (PIPE *in_pipe, TRIGGER *t, int pretrigger,
    int posttrigger, PIPE *out_pipe)
{
    long int d;
    int I;

    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);
    trigger_open (t, P_READ);
    while (1)
    {
        trigger_wait (t, in_pipe, pretrigger,1);
        for (i=0; i < (pretrigger+posttrigger); i++)
        {
            d = pipe_get (in_pipe);
            pipe_put (out_pipe, d);
        }
        trigger_updt_status (t, (pretrigger+posttrigger));
    }
}

The following example is a combination of the DAPL system’s TSTAMP and FORMAT
commands. TSTAMP2 waits for trigger assertions and prints the sample count of each
assertion. This command is unusual because it is not directly associated with a data



Software Triggering Support 57

stream. This means it is safe to use the otherwise dangerous trigger_gettrigger_gettrigger_gettrigger_get function to
suspend task execution until an assertion appears.

/*  TSTAMP2 (t)
*      - prints the assertion count of all assertions
*        that appear in trigger 't'
*/
#include <cdapcc.h>
void main (PIB **plib)
{
    void **argv;
    int argc;
    TRIGGER *  trig;
    unsigned long int  assertion;

    argv = param_process (plib, &argc, 1, 1, T_TRIGGER);
    trig = (TRIGGER *) argv[1];
    trigger_open (trig,P_READ);

    while (1)
    {
        assertion = trigger_get(trig);
        trigger_set_status (trig,assertion);
        printf ("Assertion at timestamp=%ld\n",assertion);
    }
}

The last custom command example is a “watchdog time-out”. In this application, an
event should occur at least once every N samples. If N samples pass without a trigger
assertion appearing, there is a fault condition, which is to be indicated by signaling
another trigger. Action is critical when a sample does not arrive, hence examining
trigger status is important to this application.



58 Software Triggering Support

/*  WATCHDOG (tin, N, tout)
*     examines the status of trigger tin
*     does nothing if an assertion occurs every N samples
*     otherwise, signals trigger tout and terminates
*/
#include <cdapcc.h>
void  main (PIB **plib)
{
    void **argv;
    int argc;
    TRIGGER   *tin, *tout;
    unsigned long int   baseline, status;
    unsigned long int   N;
    int  flag;

    argv = param_process (plib, &argc, 3, 3,
      T_TRIGGER, T_CONST_W, T_TRIGGER);
    N = *(int *) argv[2];
    tin  = (TRIGGER *) argv[1];
    tout = (TRIGGER *) argv[3];
    trigger_open(tin,P_READ);
    trigger_open(tout,P_WRITE);
    baseline = 0xFFFFFFFF;

    while (1)
   {
        status = trigger_get_immediate(tin,&flag);
        if ((status-baseline)>N)
        {
            /* Timeout.  Raise alarm, hang task here */
            trigger_put(tout,status);
            while (1)  task_switch();
        }
        trigger_set_status(tin,status);
        trigger_set_status(tout,status);
        if (flag)
            baseline = status;
        else
            task_switch();
    }
}



Floating Point Support 59

6. Floating Point Support

This chapter describes the Developer's Toolkit for DAPL support for floating point
computing.

Most custom commands do not need floating point. The data obtained from the analog
section analog-to-digital converters is naturally represented by fixed-point values with
16-bit precision. Also, most of the processing capabilities built into the DAPL
operating system are designed for direct operations on the 16-bit data. However, there
are some situations in which widely-used numerical techniques are easier to represent
in a floating point notation, and the extra overhead of floating point computation is a
secondary consideration.

Floating point and double data types, constants, casts, functions, and conversions are
fully supported. The 80-bit long float type can be used, but is not supported by
Developer's Toolkit for DAPL math library functions. Only the 32-bit float type is
compatible with DAPL pipes.



60 Floating Point Support

The Toolkit Libraries

Floating point computation is supported in one of two ways, depending on the
hardware capabilities of the Data Acquisition Processor on which the custom
command runs. Some of the 80x486 processors have an on-chip floating point unit
(FPU). When a hardware FPU is available, the FPU executes the floating point
operations specified by a custom command. When a hardware FPU is not available,
floating point emulation software steps in, taking control temporarily and performing
the floating point operations using software services. The primary difference is a
dramatic difference in speed. If speed is not an issue, the floating point emulation may
be completely satisfactory.

The Developer's Toolkit for DAPL library has four versions. Two versions support
operation in the 16-bit DAPL version 4 environment, and two versions support the 32-
bit DAPL2000 environment. For each of the two operating systems, both versions of
the library are provided:

SMALL
• This library version does not support any floating point operations or floating

point formatting conversions. This version of the library produces the smallest and
most efficient code. It uses the least amount of resources on the Data Acquisition
Processor and runs the fastest. It is compatible with all Data Acquisition Processor
models and DAPL versions.

FP
• This library version provides full IEEE floating point support, including

formatting conversions. When floating point coprocessor hardware is available on
the Data Acquisition Processor, this library uses it. Otherwise, this library
automatically uses the floating point emulation software built into the operating
system. The code size is a little larger, and there is slightly more system overhead.
This library is available for all Data Acquisition Processor models except the ones
with software in ROM. It requires DAPL version 4.3 or later, or any version of
DAPL2000.

The appropriate library version is selected at compile time by the SMALL or FP switch
(in all capitals) on the DOS command line. Use the MCC4 or BCC4 batch file for 16-
bit custom commands compatible with DAPL version 4, or use the MCC16 or BCC16
batch files for 16-bit custom commands compatible with DAPL 2000.



Floating Point Support 61

Floating Point Library Functions

The floating point library functions provided with C compilers will not work in the
Data Acquisition Processor environment. The Developer's Toolkit for DAPL replaces
the compiler’s standard floating point library functions with equivalent functions.
These functions, in addition to working in the DAPL environment, are smaller, faster,
and make better use of a hardware FPU when available.

The library functions are fully compatible with the corresponding functions provided
in your compiler libraries. No changes to a custom command’s C code or to the
libraries provided with the compilers are required to use the Developer's Toolkit for
DAPL floating point libraries. The function names, parameters, and return values are
exactly the same. You may include the MATH.H file into your source. The modified
library functions are automatically included by specifying the FP library at compile
time.

The following table lists math library floating point functions that are supported by the
Developer's Toolkit for DAPL.

acos atan fabs log10
asin atan2 floor modf
atan atof fmod pow
atan2 ceil frexp sin
acos cos hypot sqrt
asin exp log tan

The Bessel functions are not supported. The hyperbolic functions and their inverses
are not supported by the FP library.



62 Floating Point Support

Compiler Limitations

The Microsoft and Borland compilers are alike in most ways, but they differ in their
handling of floating point. Most of the differences are resolved by the msftfp4.obj,
msftfp16.obj, borlfp4.obj, or borlfp16.obj files. These are linked
automatically with the custom command when it is compiled using the FP command
line switch. One difference, however, cannot be corrected in this manner. When using
a Microsoft compiler, the return value from a floating point function is stored in
memory, and a pointer to the value is passed back to the calling function. Currently,
this is not compatible with the EXEPROC relocation utility. Until a solution is found, it
will not be possible for custom commands compiled with Microsoft compilers to
return a floating point value from a function directly. Instead, an extra pointer
parameter must be passed to the function, and the return value must be stored in that
location. This problem does not affect functions in the Developer's Toolkit for DAPL
floating point function library.

For example, the following is fine for the Borland compilers, but will fail for
Microsoft compilers:

float my_function(float);
float ff, result;
.
.

ff = my_function(ff);

The solution is to change the local function my_function to store the resulting value
using a passed pointer, returning no result.

void my_function(float, float *);
float ff, result;
.
.
my_function(ff,&result);

The FP library gives total control of real or emulated FPU hardware. See any 80x386
or 80x486 assembly language programming manual for details of the FPU instruction
set. Most of the FPU capabilities are supported by the inline assembly features of the
C compilers, but some are not. Separate assembly instructions, coded as a subprogram
for C language, will make these additional instructions available to advanced floating
point programmers.



Floating Point Support 63

Using Pipes

There are a few special considerations when using PIPE inputs and outputs for
floating point values. These features are available only when using the FP version of
the Developer's Toolkit for DAPL.

There are three special facilities of DAPL available for passing floating point data to
and from a custom command.

For a pipe that passes floating point data from one custom command to another,
declare the PIPE to have FLOAT type in the DAPL command file. For example:

PIPE PF1 FLOAT
TRIGGER T1
 .
 .
PDEF A
FLTCMD1(IPIPE0,PF1)
FLTCMD2(PF1,T1)
END

In this example, the custom command FLTCMD1 performs a floating point analysis on
data from input channel pipe 0, and writes floating point data into pipe PF1. Custom
command FLTCMD2 checks floating point data in pipe PF1 and generates trigger T1 if
certain special conditions are detected.

For obtaining floating point data from the PC, a communications pipe may be defined
using the CPIPE command, as follows.

CPIPE FLIP INPUT FLOAT

For transferring floating point values to the PC, use a similar definition to set up an
output communications pipe:

CPIPE FLOP OUTPUT FLOAT



64 Floating Point Support

It is possible to transfer floating point data to and from the PC on the normal binary
data channel using the MERGE command:

PIPE FL1 FLOAT, FL2 FLOAT

PDEF A
FLTCMD(FL1)        ; Fills FL1 pipe
MERGE(FL1,$BINOUT) ; Sends FL1 to the PC
MERGE($BININ,FL2)  ; Receives FL2 from PC
END

When using the function param_processparam_processparam_processparam_process to check parameter types, use the
T_PIPE_FL code for floating point pipes.

A custom command can define, compute, and store data values in double precision or
single precision floating point. However, transfers through DAPL pipes are in single
precision, 32-bit representation only. This constraint should seldom be a problem,
since a single-precision floating point value has approximately seven significant
decimal digits. If it is necessary to retain all 64 double-precision bits, place the 64-bit
double precision values into the buffer storage array of a float pipe, and use the
pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt field to double the number of double-precision values present. DAPL
will transfer the data via the 32-bit pipe, but the receiving task must extract the values
pairwise, and reassemble the pairs of 32-bit codes to restore the original 64-bit double
precision value.

Formatting floating point numbers into ASCII strings is supported by the printfprintfprintfprintf,
fprintffprintffprintffprintf, and sprintfsprintfsprintfsprintf functions. These functions have the same form as their
Standard C Library counterparts, except that the standard output stream is the DAPL
text pipe to the PC, and the fprintffprintffprintffprintf function writes to a pipe rather than to an output
stream. The format conversions for the FP library are compatible with Standard C.

The DAPL operating system will maintain floating point processor state information
and work areas. There is no need to worry about saving and restoring the FPU state
when more than one custom command uses the FPU, but there is some additional
overhead. To keep this overhead to a minimum, it is best to use floating point
processing in a minimal number of processing tasks.



Floating Point Support 65

Example Application

The following custom command illustrates the use of floating point to compute a
complex algebraic function of two fixed-point pipes, writing the result to a float
output pipe:

/* FLOAT (p1, p2, fp3)
*    - computes a scientific function of pipes 'p1'
*      and 'p2' and sends the results to pipe 'fp3'
*/
#include <math.h>
#include <cdapcc.h>
void main (PIB **plib)
{
void **argv;
int argc;
PIPE *p1,*p2,*fp3;



66 Floating Point Support

/* Check and extract parameters */
argv = param_process (plib, &argc, 3, 3, T_PIPE_W,
                      T_PIPE_W, T_PIPE_FL);
p1 = (PIPE *) argv[1];
p2 = (PIPE *) argv[2];
p3 = (PIPE *) argv[3];

/* Perform initializations. Open all pipes. */
pipe_open (p1,P_READ);
pipe_open (p2,P_READ);
pipe_open (fp3,P_WRITE);

/* Perform the real time processing */
while (1)
{
float x1, x2, y;

/* read inputs and scale */
x1 = (float) (pipe_get(p1) * 3.0518e-5);
x2 = (float) (pipe_get(p2) * 3.0518e-5);

/* compute function of the two input values */
y = (float) exp(3.0 * x1) / ((1.224e-2 * x2 + 7.5) * x2);

/* send the floating point result */
pipe_put_float (fp3, y);
}
}

In the above example, the fixed point input values, ranging from -32768 to +32767,
are scaled to fractions between -1 and 1. Then the computations are performed. The
final result is written to a floating point pipe.



Floating Point Support 67

Floating Point Error Handling

The FP versions of the library support the errno feature defined in the Standard C
library file ERRNO.H. The following error codes are used:

DOMAIN 33 Invalid input arguments
RANGE  34 Output overflow or underflow

To use the error checking feature, include the ERROR.H at the top of the custom
command C code. This will define an errno variable. (In the jargon of the system
programmer, errno is actually a thunk. See the file ERRNO.H for your compiler for
more information on how it is implemented. Treat it as a simple integer variable.)
Before the floating point operation or operations under test, set the errno variable to
zero. Then, after the operation or operations, test it again for a nonzero value.

The following is an example of error checking applied to a sequence of computations.

#include <errno.h>
double a,b,c,tanh
  .
  .

errno = 0;
b = exp(a);
c = exp(-a);
tanh = (b-c)/(b+c);
if (errno)
{
printf("Computation of tanh failed.\n");
}

In this example, an invalid input value or an extremely large or extremely small output
value will cause the exp function to fail. The value of errno will remain zero unless
one or more failure events occurs and changes its value.

The FP library does not support the non-standard matherr function provided by the
Microsoft and Borland runtime libraries. The matherr function is useful only for
errors that occur inside math library functions. The errno mechanism is effective for
any sequence of floating point computations, whether library functions are used or
not.

The DAPL environment initializes the FPU (or its emulated equivalent) in the default
initialization mode. That is, executing the fpinit instruction is harmless to the



68 Floating Point Support

DAPL system, and correctly provides the desired benefits of clearing the FPU and
setting it to a consistent initial state. The initial state masks floating point exceptions,
and standard fixes are applied after such errors as division by zero, overflow, and loss
of precision.

The occurrence of errors is flagged in the FPU status word. This word can be
examined using inline assembly to determine the exact nature of the error. The value
of the code stored in the errno variable is not directly related to the code in the status
word. The following shows an example of inline assembly to extract floating point
status information.

int statcode;
_asm
{
fnstsw ax
mov statcode,ax
}
if (statcode|0x20) { PRECISION_ERROR; }
if (statcode|0x10) { UNDERFLOW_ERROR; }
if (statcode|0x08) { OVERFLOW_ERROR; }
if (statcode|0x04) { ZERODIV_ERROR; }
if (statcode|0x02) { DENORMAL_ERROR; }
if (statcode|0x01) { INVALIDOP_ERROR; }

In the above example, the macros PRECISION_ERROR, UNDERFLOW_ERROR, and so
forth, represent user defined actions. Be sure to clear the error flag bits to zero after
processing so that the next error can be detected.

The trap mechanism defined in the compiler library file SIGNAL.H for floating point
errors is not supported. If you change the control word bits to enable interrupts on
floating point errors, the DAPL operating system will intercept the errors, issue a
diagnostic message, and terminate the task. This could be a useful diagnostic
technique in some situations, but changing the FPU exception masks is not
recommended.



Digital Signal Processing Support 69

7. Digital Signal Processing Support

The Developer's Toolkit for DAPL provides Digital Signal Processing (DSP)
functions for waveform construction, Finite Impulse Response (FIR) digital filtering,
and Fast Fourier Transform (FFT) operations. The DSP functions provide access to
the same optimized algorithms used by built-in DAPL commands, but with a greater
degree of flexibility.

These functions are supported only by DAPL 2000. See Appendix A for more
information about compatibility with Data Acquisition Processor models that have a
DSP 56000 coprocessor and use DAPL 4.

Building Custom Waveforms

Waveforms are frequently required for signal modulation operations, custom FFT
“window operators,” and signal generation. One way to construct waveforms is by
calling the isineisineisineisine and icosineicosineicosineicosine functions, storing the returned values in a table. An
easier way is to use the icoswaveicoswaveicoswaveicoswave, isinewaveisinewaveisinewaveisinewave, or icplxwaveicplxwaveicplxwaveicplxwave function to construct
a complete waveform in one operation.

These functions have a similar form:

icoswave ( length, cycle, size, scale, storage );
isinewave( length, cycle, size, scale, storage );
icplxwave( length, cycle, size, scale, storage );

The length and cycle parameters specify the amount of data generated.

• length specifies the number of samples to be placed into the table.
• cycle specifies the number of samples necessary to exactly cover one complete

waveform cycle.

The table length may be smaller or larger than the cycle. For example, if one cycle
of an output signal is to be covered by 100 samples, and the cycle is to be repeated
five times, then the cycle length parameter should be 100, and the table length
parameter should be 500.

Another example of length and cycle is for a lookup table that is to be constructed
for a control application. For this system, torque applied to a pivoting object is
dependent on the sine of the angle of the applied force vector. A table is used to



70 Digital Signal Processing Support

quickly evaluate the sine function. A full cycle of tabulated data is not necessary,
because ¼ cycle contains sufficient information. For example, a table of 1000 entries
could be built by specifying a table length of 1000 samples and a cycle length of 4000
samples.

The size parameter determines the type of data generated. If size is set to
eWaveWord, then two-byte (short, 16-bit) values are generated. If size is set to
eWaveLong, then four-byte (long, 32-bit) values are generated.

The scale parameter is an unsigned value specifying the absolute magnitude of the
waveform. If scale is one or zero, the maximum range is used for maximum
precision. (The representable range is -32768 to 32767 for 16-bit data, or
-2147483647 to 2147483647 for 32-bit data. The value -2147483648 is not allowed.)

When the waveform has the full magnitude, it can be treated either as a very large
value or as a “normalized” signed binary fraction with the binary point immediately
after the sign bit. Sometimes this representation is awkward, and other scaling is
preferable. For example, specifying a scale parameter of 1000000 constructs a
waveform which ranges from -1000000 to +1000000, for a resolution of one part in
106.

The data are placed into the storage location indicated by the storage parameter.

The icoswaveicoswaveicoswaveicoswave, isinewaveisinewaveisinewaveisinewave, and icplxwaveicplxwaveicplxwaveicplxwave functions can all generate waveform
data for a full wave cycle, multiple wave cycles, or any desired fraction of a wave
cycle. A storage area sufficient to contain this data must be set up by the custom
command prior to constructing the waveform. Waveforms may be placed into arrays
with automatic, static, or dynamic storage class. For long waveforms, it is best to
allocate memory blocks dynamically using the rallocrallocrallocralloc function. For example, to set
up a 32-bit waveform with 1,000 values, use the following:

longwave = ralloc( 1000 * sizeof(long) );

Strictly speaking, only one of the three functions is really necessary. A sine function
contains the same information as a cosine function, except shifted by ¼ cycle. A
complex waveform also contains the same information, only packed differently. Use
whichever function is most convenient.

Other phase angles can be obtained by shifting either sine or cosine wave data. This
property can be used to generate a table for any phase shift. For example, suppose that
one full waveform of sinusoidal data is desired, with steps corresponding to 1/400 of a
cycle. The isinewaveisinewaveisinewaveisinewave function is called to construct a waveform of exactly two
cycles with 400 samples-per-cycle, or 800 total samples. Phase shifts can then be



Digital Signal Processing Support 71

established by setting a C-language pointer to selected locations in the first 400
elements of the table. For example, a phase shift of 1/16 cycle is obtained at an offset
400/16, or 25 samples from the beginning of the data block:

int  *shifted_wave;
shifted_wave =  storage+25;
first = shifted_wave[0];
second = shifted_wave[1];

Sine and cosine values are often needed in pairs for specialized modulation and
custom transform operations. Using the icplxwaveicplxwaveicplxwaveicplxwave function, a data table can be
constructed with corresponding cosine and sine terms stored pairwise. These can be
considered the real and imaginary parts of a complex-valued sinusoid (equivalently,
an exponential function with imaginary-valued exponent). Or, they may be considered
two real numbers that are conveniently stored in a double-entry lookup table.

The following example illustrates construction of a special test waveform required to
drive an output procedure. The wave is full magnitude. The output is updated every 25
microseconds. The wave consists of 1/10 second of 400 Hz baseline tone, followed by
a 1/40 second tone burst of 4th harmonic tone, followed by another 1/10 second of 400
Hz tone. That is, 4000 samples of baseline tone, 1,000 samples of tone burst, then
another 4000 samples of baseline are needed. At 400 Hz with 25 microsecond
updates, one complete cycle requires 100 synchronous output updates. Build this
special waveform with the following sequence of instructions:

/* Reserve 18K of memory */
int  * tone_buffer,  errcode;
tone_buffer = ralloc( 9000*sizeof(int) );

/* Construct the three parts of the waveform */
errcode  = isinewave( 4000, 100, sizeof(int),

1, tone_buffer);
errcode |= isinewave( 1000, 100/4, sizeof(int),

1, (tone_buffer+4000) );
errcode |= isinewave( 4000, 100, sizeof(int),

1, (tone_buffer+5000) );
if (errcode)
{

printf(“Waveform construction failed!\n”);
exit(1);

}



72 Digital Signal Processing Support

Performing FFT Transforms

Functions provided by the Developer's Toolkit for DAPL give access to the 16-bit
fixed-point transforms implemented in the DAPL system. In contrast to FFT
operations performed by a built-in DAPL FFT task, FFT operations in custom
commands are performed on demand. All of the capabilities of the FFT computing
engine are available to custom commands, plus many additional processing options.

FFT computation services are requested, and results accessed, by means of the
following sequence of functions:

• fft_initfft_initfft_initfft_init
• fft_requestfft_requestfft_requestfft_request
• fft_statusfft_statusfft_statusfft_status
• fft_receivefft_receivefft_receivefft_receive

The fft_initfft_initfft_initfft_init function defines the properties of an FFT, and is further described in
the next section of this chapter. It is executed once during command startup.

The fft_requestfft_requestfft_requestfft_request function initiates FFT computation, using the transform
characteristics previously defined by the fft_initfft_initfft_initfft_init function.

The remaining two functions guarantee synchronization between the DAPL
computations and the custom command. The fft_statusfft_statusfft_statusfft_status function verifies that the
FFT computation is complete. The fft_receivefft_receivefft_receivefft_receive function guarantees that the FFT
results are stored and ready for further processing. If portability between different
Data Acquisition Processor models is not a consideration, and the custom command is
intended for operation on a specific Data Acquisition Processor model which does not
use a separate processor for DSP computations, these two steps may be omitted. In
general, skipping these steps is not recommended practice.

FFT Initialization

The fft_initfft_initfft_initfft_init function defines the properties of an FFT in an information structure
called an FFTB, maintained by the DAPL system. This structure defines where data is
stored and which processing options to apply.

There are many options for configuring an FFT operation. All information required to
specify these processing options is collected into the FFTB structure. The fft_initfft_initfft_initfft_init
function builds this structure, and returns a pointer for use by subsequent function
calls.



Digital Signal Processing Support 73

The parameter list of the fft_initfft_initfft_initfft_init function has the form:

fft_init( size, realbuf, imagbuf, window, direction,
solution, post,
   options );

The parameters size, realbuf and imagbuf define the data storage for the FFT
operation. The window, direction, solution, post, and options parameters
provide various configuration options. Each of these parameters will be discussed in
detail in the next few sections of this chapter.

The fft_initfft_initfft_initfft_init function returns a pointer to an FFTB configuration block. If an error
is detected in the function parameter list, a NULL (zero) pointer is returned. Errors are
diagnosed when there is no possible interpretation of an argument value, for example
a post-transform operation code which is not defined. Many inconsistencies between
parameter options cannot be detected, because of the wide range of potentially valid
combinations.

FFT Storage

The size parameter of the fft_initfft_initfft_initfft_init function specifies the length of the FFT, and
consequently, determines the size of the required data areas. The size parameter
specifies the number of complex input items N of the FFT, where N = 2M for some
integer M. M is a number in the range 2 to 14. This range may be restricted for
particular Data Acquisition Processor models and certain DAPL versions. Note that
the built-in FFT command provided by DAPL uses M rather than N to specify the FFT
size.

In general, an FFT operation is applied to complex input data, and storage must be
provided for both real and imaginary terms. Data are usually delivered to the custom
command in DAPL pipes, so the buffer storage used for the blocked pipe operation
can also serve as storage for FFT data. Real and imaginary parts typically arrive in
separate data streams, and for this case, two storage buffers are required, with
locations specified by the pointers realbuf and imagbuf.

The size parameter specifies the number of complex input terms—it does not specify
the number of bytes of storage required. For example, suppose that a 1024 point FFT
is performed on complex input data with separate real and imaginary input data
streams.



74 Digital Signal Processing Support

#define FFTSIZE   1024
real_buf = ralloc(FFTSIZE);                 /* wrong! */
imag_buf = ralloc(FFTSIZE);
real_buf = ralloc(FFTSIZE * sizeof(int));   /* right! */
imag_buf = ralloc(FFTSIZE * sizeof(int));

In some cases, it is convenient for the FFT to operate upon complex data with real and
imaginary terms stored as contiguous pairs of numbers in a single buffer. An FFT
operation can be configured to use this data format by setting a flag in the option
parameter, as will be discussed later in this chapter. For pairwise storage of complex
data, the realbuf pointer must point to a data area which is twice as large, in order to
contain twice as much data per FFT input element. The imagbuf parameter can be set
to NULL.

#define  FFTSIZE   1024
real_buf = ralloc(FFTSIZE * sizeof(int));       /* wrong! */
real_buf = ralloc(FFTSIZE * 2 * sizeof(int));   /* right! */
imag_buf = NULL;

The FFT configuration options can specify a number of output processing options that
replace the input data with the FFT output data. In this case, the same buffer storage is
used both for input and output values. The storage areas indicated by the realbuf
and imagbuf pointers must be set up by the custom command programmer to cover
all of the requirements for both input and output data. For example, an FFT can be
configured to take N real input values and replace them with N 32-bit long power
values. In this situation, the memory storage indicated by the realbuf parameter
must be sufficiently large to contain N 32-bit long output values, twice as much
storage as required by the input data.

#define  FFTSIZE   1024
int   * input_real;
long  * output_long;

input_real = ralloc(FFTSIZE * sizeof(long));
output_long = (long *) input_real;

If the FFT configuration options specify that the input data is real-valued or complex-
valued but stored pairwise in a single buffer, and if the processing options select
output processing that yields a real-valued result, then the imagbuf parameter is not
needed and can be set to NULL.

The fft_initfft_initfft_initfft_init function should be called only once for each type of FFT transform.
For instance, if the custom command computes transforms of size 256, 512, or 1024



Digital Signal Processing Support 75

points, three fft_initfft_initfft_initfft_init operations should be performed during command
initialization, one for each size.

FFT Window Operations

The window parameter specifies a window operation to be applied to the data prior to
performing the actual transform. The FFT window is characterized by an array of
coefficients. The terms of this window are multiplied term-by-term with the values in
the data arrays. The purpose of this operation is to reduce end-of-block truncation
effects when FFT analysis is to be performed on a non-periodic data sequence. (The
underlying theory of Discrete Fourier Transforms assumes that input data represent
one period of a waveform having period N.) The window operation has the effect of a
local smoothing of the FFT output spectrum. There are other side effects, however,
including large changes in dominant frequency components and loss of much of the
information from the beginning and end of the input data block.

There are two ways to specify a window. This parameter may be one of the pre-
defined window types, specified by the following codes defined in the CDAPCC.H file:

• WINDOW_RECTANGULAR
• WINDOW_HANNING
• WINDOW_HAMMING
• WINDOW_BARTLETT
• WINDOW_BLACKMAN

A pre-defined window option will establish storage for window coefficients
automatically. This is the most convenient way to apply a window operation. To make
better use of storage in advanced applications where several tasks perform large FFT
operations using similar window operations, it is worthwhile to establish a user-
defined window vector.

WINDOW_RECTANGULAR is equivalent to no window operation, and may also be
specified by a parameter value of zero. It means that data blocks are not modified
prior to performing FFT computations. The other window types are the most common
non-parametric window types described in the DSP literature.

Alternatively, the window parameter can specify a user-defined vector. In this case,
the parameter must be a pointer to an array containing the N coefficients of the
window operator. The values in the array must be 32-bit signed-long, positive values,
scaled so that the range from 0 to +1 is covered by the full range of representable
integers. In other words, each value can be considered a binary fraction with the
binary point immediately after the leading zero (sign) bit. The storage for the user-
defined array can be dynamically allocated by the custom command, for example



76 Digital Signal Processing Support

using the rallocrallocrallocralloc function. The coefficients may also be defined by a VECTOR in a
DAPL command file. Defining a VECTOR has the special advantage that multiple tasks
can share the coefficient set. The VECTOR must be a signed long (32-bit) type, and the
vector_startvector_startvector_startvector_start function must be used to obtain the pointer to the shared coefficient
data.

The C language cannot accept a function parameter that is either an integer code or a
pointer to 32-bit data; a parameter must have a single type. A compromise is reached
by casting the window option, whether pointer or constant, to an unsigned long
type before calling the fft_initfft_initfft_initfft_init function.

Windowing operations can be applied to real-valued or complex input data, for all
computational methods, and either transform direction. Window operations are
typically applied to real-valued time-domain data and forward direction transforms.
The user should ascertain whether a window operation is appropriate before using one
in other situations.

FFT Precision Options

There is more than one solution method available for computing an FFT. The
computation technique is selected by the solution parameter.

When the FFTSOLN_FAST option is selected, the solution method uses faster
instructions and algorithms at the expense of reduced precision, allowing more
accumulated error during the FFT computation. When FFTSOLN_ACCURATE is
selected, the solution method uses somewhat slower instructions and algorithms which
retain more significant bits and round more carefully, at the expense of speed. The
FFTSOLN_FAST option is preferred, for example, when looking for a particularly
prominent frequency peak in noisy data. The FFTSOLN_ACCURATE version is
preferred, for example, when studying low-level noise components.

When option value 0 is specified, the solution technique defaults to the
FFTSOLN_FAST option.

FFT Direction Options

An FFT may be a forward-direction transform or a reverse-direction (inverse)
transform, as specified by the value of the  direction parameter,
FFTDIR_FORWARD or FFTDIR_REVERSE. These two transforms form an inverse pair.
That is, applying a forward transform and then a reverse transform yields (within
computational accuracy) the original data. Applying a reverse transform and then a
forward transform also yields (within computational accuracy) the original data. Even



Digital Signal Processing Support 77

though the two transforms are mathematically very similar, they have different
properties computationally. The forward transform is usually considered the
transformation of time-domain data into frequency domain, and the reverse transform
is usually considered the transformation of frequency domain data back into the time
domain.

One of the two transforms must scale by a factor 1/N, in order to make the final
scaling of all the terms come out right. This scaling factor may be applied either
during the forward direction or the reverse direction transform. The 1/N is most
commonly associated with the forward transform in the DSP literature, but this
convention is not universal. In the FFT transforms provided by the Developer's
Toolkit for DAPL, the 1/N factor is applied to the forward rather than the reverse
transform.

This is not an arbitrary choice. As an FFT computation progresses, intermediate terms
tend to grow and can overflow as terms are summed. To counter this tendency, it is
advantageous to continuously scale the computations as the transform proceeds. At the
end of the computation, a well-scaled transform results, with a net scaling factor of
1/N. This preserves the most significant information while avoiding overflow. For
most FFT computations, the desired information is present in the peaks, and the lesser
values are considered noise. The scaled forward FFT contains well-scaled information
about peaks.

Not all applications have these same requirements. For example, in an application that
measures harmonic distortion, the high peak value of a sine wave test signal is of no
relevance. The important characteristics are the subtle low-amplitude peaks at
multiples of the test frequency. For such an application, scaling the transform is a
disadvantage because it suppresses the desired low-level information. A transform
without the 1/N scaling is computationally a better choice to avoid loss of information.

A reverse transform can be used in place of a forward transform, to take advantage of
the different scaling strategy, as long as the different properties of the two transforms
are taken into account.

The first difference is that the weighting coefficients used in a reverse transform are
the complex conjugates of the weighting coefficients used in a forward transform.
When applied to a sequence of complex values, a reverse transform delivers transform
results in reverse order. A special case of this, applying a reverse transform to a
sequence of real values, produces results which are complex conjugates of the desired
forward transform. In some cases the difference is of no importance—for example,
conjugated data has no effect on the results of a power computation. Knowing what to
expect, it is easy to adjust the data when necessary.



78 Digital Signal Processing Support

The second difference is that the scaling of the reverse transform can quickly send
even relatively small peaks to saturation. For example, with a reverse transform of
length 1024, any peak of magnitude 32 and above is effectively multiplied by 1024,
causing saturation. Once saturated, it is not possible to distinguish small peaks from
large ones.

The third differences is noise. The FFT computations are performed in fixed point
arithmetic, so inevitably roundoff errors will accumulate. A rule of thumb is that for a
length N transform where N = 2M, the last M/2 bits contain noise. This is usually not a
problem, however, because statistically meaningful peaks will stand out from the
noise. For example, given a 1024-point transform and a clean input signal that does
not significantly contribute to the noise level, frequency peaks as small as 1/8 of the
least-significant bit of the sampling resolution should be detectable. (Do plenty of
experiments.)

The fourth difference is accuracy. Extra precision is needed to preserve all of the low-
level information needed by the reverse transform. The FFTSOLN_FAST option does
not preserve enough low-level information for most inverse FFT applications. Thus,
the FFTSOLN_ACCURATE solution method is usually necessary. There is of course a
small penalty in execution time for this extra precision.

Post-FFT Processing Options

The post parameter specifies the processing steps to be applied after an FFT
transform is completed. The symbols for selecting post-transform processing options
are defined in the CDAPCC.H file.

Most operations are applied primarily to forward transforms with real-valued input
data. The Developer's Toolkit for DAPL allows any of the post-processing options to
be applied to any kind of transform, whether or not the operation has a meaningful
physical interpretation, so use with care. For example, applying the FFTPOST_POWER
option after a forward transform of real data yields information about power spectral
density. Applying the FFTPOST_POWER option to a reverse transform of frequency
spectrum data yields information about instantaneous complex power in a time-
domain signal.

The available options include the following:

FFTPOST_DEFER
• Apply no post-transform processing and return no data. The input data provided to

the FFT is returned without change. The FFT results may be accessed and post-
processed in a separate operation at a later time. This option must be specified
when it is necessary to preserve the original input data.



Digital Signal Processing Support 79

FFTPOST_REAL
• Extract only the real terms from the transform result, ignoring the imaginary terms.

FFTPOST_CPLX
• Extract both real and imaginary terms from the transform result, storing the

complex values according to the data format specified for complex numbers. (See
the discussion of the options parameter.)

FFTPOST_POWER
• Convert the transform results to power by squaring and summing real and

imaginary parts. For a forward transform, this can be interpreted as power spectral
density. The computed terms have 32-bit LONG precision, but the accuracy
depends on the solution option (see the FFT_FAST and FFT_ACCURATE options
below).

• The behavior is slightly different for real input data and complex input data. When
the FFT input is complex, the power computations are always term-by-term.
However, when the FFT input is real-valued, the power terms at the two ends of
the spectrum are identical and not distinguishable due to the symmetry properties
of a transform. If the number of output terms is N/2 (see the FFT_HALFOUT
option), the power from terms at the low and high ends of the spectrum are
combined, in effect doubling the power terms. If the number of returned terms is
N, the terms at the two ends of the spectrum are not combined, and an even
symmetry can be observed in the data.

• Only real-valued outputs are generated. The storage specified by the realbuf
parameter of the fft_initfft_initfft_initfft_init function is used to store the power values. Be sure that
this area is sufficiently large to contain the long data type. The storage specified by
the imagbuf parameter of the fft_initfft_initfft_initfft_init function is not affected. When input is
real-valued, the imagbuf parameter can be set to NULL. Note that this behavior is
different from previous versions of the Developer's Toolkit for DAPL, which split
most-significant and least-significant bits of the power results into the realbuf
and the imagbuf respectively.

FFTPOST_NORMPOWER
• Apply power computations, almost the same as POWER, but treating the

transformed values as normalized fractions, with the full output range covering the
interval -1 to 1. As a practical matter, the result of this option is that each of the
post-processed output values is larger by a factor of two. Sometimes, the resulting
value is not representable, and is replaced by a ‘saturated’ maximum representable
value. Otherwise, everything else is the same as for the FFTPOST_POWER option.

FFTPOST_MAGNITUDE
• Apply the same computations as FFTPOST_POWER, but then apply a square root

operation. The result can be interpreted as the magnitude of a frequency



80 Digital Signal Processing Support

component in the frequency domain, or as an instantaneous complex magnitude in
the time domain. The output values have 16 bits precision. The storage specified
by the realbuf parameter of the fft_initfft_initfft_initfft_init function is used to store magnitude
values. The storage specified by the imagbuf parameter of the fft_initfft_initfft_initfft_init
function is not affected.

FFTPOST_MAG_PHASE
• Apply the same computations as FFTPOST_MAGNITUDE, and also compute the

phase angle (the arctangent of the ratio of imaginary part to real part).
• Both magnitude and phase values are returned in 16 bit precision. Because there

are two output components, the output values are treated as if they were complex
numbers. (See the processing options below). The storage specified by the
realbuf parameter of the fft_initfft_initfft_initfft_init function is used to store magnitude values.
The storage specified by the imagbuf parameter of the fft_initfft_initfft_initfft_init function is
used to store phase values. Phase angles show an odd symmetry rather than an
even symmetry when the FFT derives from real data.

Other Options

Other processing options are specified by a set of Boolean flag bits which make up the
options parameter. Flags are merged using a bitwise OR operation, and presented to
the fft_initfft_initfft_initfft_init function as a single parameter.

The option flags are used to select input and output data types. To use defaults, the
options parameter may be set to zero. As a general practice, however, is it suggested
that all options be declared explicitly, so that the custom command programmer
doesn’t have to remember which options are in effect.

At most one option flag may be specified from each of the following groups.

FFT_REALIN
FFT_CPLXIN

• These specify the type of input data provided to the FFT. Either real or complex
data may be used with any solution precision, solution direction, or post-
processing option.

• The impact of this option on speed is quite dramatic. For real-valued data, an
alternative FFT algorithm is applied, saving roughly 40% of the computation time.

• In previous versions of the Developer's Toolkit for DAPL, it was necessary to fill
the imaginary input terms with zeroes when the input values were strictly real. This
is no longer the case. As described previously in this chapter, the imagbuf
parameter may be NULL if input data is real-valued and the post-processing options
(such as MAGNITUDE) generate only real output terms.



Digital Signal Processing Support 81

• Application notes for previous Developer's Toolkit for DAPL versions have
suggested a computational “trick” in which two real-valued FFTs are computed in
a single operation, by treating the two real-data streams as real and imaginary
terms of a complex FFT. This “trick” is no longer recommended. In effect, it is
already built into the real-data FFT computations and is applied automatically. Use
two real-data FFT operations instead.

• The default is FFT_CPLXIN.

FFT_SEPARATED
FFT_PAIRWISE

• The FFT_SEPARATED or FFT_PAIRWISE options select the storage organization
for complex numbers. These options have an effect when there is complex-valued
data on either input or output. The FFT will treat complex numbers consistently on
input and output, either as pairs of values stored together, real part first and then
imaginary part, or as separate terms stored in isolated buffers. Complex number
arithmetic is simplified when the terms are stored together, but pipe operations
may require separated terms.

• With FFT_SEPARATED, separate buffer areas are used for the real and imaginary
terms of complex-valued inputs and outputs, and a separate imagbuf storage area
must be provided for the imaginary parts. With FFT_PAIRWISE, complex terms
are stored together, and the imagbuf parameter of the fft_initfft_initfft_initfft_init function should
be NULL.

• The default is FFT_SEPARATED.

FFT_HALFOUT
FFT_FULLOUT

• Specifying FFT_HALFOUT suppresses output of the last N/2 terms of an FFT, and
has some additional impacts when FFT_REALIN is in effect.

• FFT_HALFOUT is most commonly used in conjunction with the FFT_REALIN
option. The FFT_HALFOUT option may be useful on occasions when the input data
stream is complex, but it is known that the high frequency terms are not
meaningful to the application.

• Applying an FFT to real input terms produces transformed real output terms with
even symmetry, and imaginary output terms with odd symmetry. In other words,
there is no additional information to be learned from the last N/2 terms of the
transform. The FFT_HALFOUT option suppresses the unnecessary terms.

• There is another effect associated with this option. When FFT_REALIN is in
effect, the symmetric transform artificially splits the power spectrum into two
parts. When the FFT_HALFOUT option is used in conjunction with FFT_REALIN,
power computations recombine the effects of high-end and low-end terms. This
affects the FFTPOST_POWER, FFTPOST_NORMPOWER, FFTPOST_MAGNITUDE, and
FFTPOST_MAG_PHASE processing options.

• The default option is FFT_FULLOUT.



82 Digital Signal Processing Support

Example of option flags:

To explicitly select the FFT options which are the default options, use the following:

unsigned defaultoptions;
defaultoptions = FFT_CPLXIN | FFT_SEPARATED | FFT_FULLOUT;

Typical FFT Options

As examples of typical FFT configurations, the following listing describes the option
sets for the eight ‘modes’ supported by the built-in FFT command in DAPL. The
FFT32 command ‘modes’ are similar except that the FFTSOLN_ACCURATE solution
option is used instead of the FFTSOLN_FAST option.

MODE 0:  Forward transform of real-valued data
  real and imaginary data buffers specified
  typically uses window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_CPLX,
  FFT_REALIN | FFT_FULLOUT | FFT_SEPARATED

MODE 1:  Forward transform of complex-valued data
  real and imaginary data buffers specified
  typically does not use window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_CPLX,
  FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED

MODE 2:  Reverse transform of complex data retaining reals
  real and imaginary data buffers specified
  typically does not use window operation
  FFTDIR_REVERSE,
  FFTSOLN_FAST,
  FFTPOST_REAL,
  FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED



Digital Signal Processing Support 83

MODE 3:  Reverse transform of complex data retaining reals
  real and imaginary data buffers specified
  typically does not use window operation
  FFTDIR_REVERSE,
  FFTSOLN_FAST,
  FFTPOST_CPLX,
  FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED

MODE 4:  Forward transform of reals, power post-process
  real buffer specified
  typically uses window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_POWER,
  FFT_REALIN | FFT_HALFOUT

MODE 5:  Forward transform of reals, magnitude post-process
  real buffer specified
  typically uses window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_MAGNITUDE,
  FFT_REALIN | FFT_HALFOUT

MODE 6:  Forward transform of reals, mag/phase post-process
  real and imaginary buffer specified
  typically uses window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_MAG_PHASE,
  FFT_REALIN | FFT_HALFOUT

MODE 7:  Forward transform of reals, norm-power post-process
  real buffer specified
  typically uses window operation
  FFTDIR_FORWARD,
  FFTSOLN_FAST,
  FFTPOST_NORMPOWER,
  FFT_REALIN | FFT_HALFOUT



84 Digital Signal Processing Support

Deferred Post-FFT Processing

The raw transform result of an FFT operation is preserved until the next FFT
operation is requested using the same FFTB. Before then, alternative post-transform
processing may be applied. The results may be placed into the FFT input storage
buffer area or into a different buffer area. A typical application for this option is to
preserve the input data and send the FFT data to separate storage, so that both data
sets can be processed further.

Use the fft_postopfft_postopfft_postopfft_postop function to request post-FFT processing without computing a
new transform. The fft_postopfft_postopfft_postopfft_postop function has the following form:

fft_postop( fft, realbuf, imagbuf, post, options );

Note that the parameters are very much like the fft_initfft_initfft_initfft_init function parameters. The
fft parameter provides access to the FFTB containing the preserved FFT result. The
realbuf and imagbuf parameter specify locations for output data, which may or
may not be distinctive from the storage areas originally used by the FFT. The
realbuf and imagbuf parameters are used for data output exactly as the
corresponding realbuf and imagbuf areas are used by the fft_requestfft_requestfft_requestfft_request function.

The input options in the options parameter are ignored, but alternate output options
may be specified. For example, the input to the original FFT may have been in the
form of complex data pairs, but the new options can request real and imaginary parts
returned separately.

In the following example, the original FFT operation returns the real and imaginary
parts of a transform, and the follow-up operation returns the magnitude.

int  databufr[256], databufi[256], databufm[256];

fft = fft_init( 256, databufr, databufi,
    WINDOW_RECTANGULAR, FFTDIR_FORWARD, FFTSOLN_FAST,
    FFTPOST_CPLX, defaultoptions);
fft_request(fft);

fft = fft_postop( fft, databufm, NULL,
    FFTPOST_MAGNITUDE, defaultoptions );



Digital Signal Processing Support 85

FFT Processing With More Than One Buffer

Most FFT processing involves a sequence of operations on a single data stream, but
sometimes similar FFT transforms must be applied to data from a number of separate
data channels. For applications with multiple data channels, the function
fft_chngbuffft_chngbuffft_chngbuffft_chngbuf allows setting up a single FFTB structure for use with number of
different data buffers. A separate FFTB structure for each data stream is an option, but
can consume a large region of memory if there are many data streams.

A call to the fft_chngbuffft_chngbuffft_chngbuffft_chngbuf function has the form:

fft_chngbuf( pFFTB, realbuf, imagbuf);

The first parameter specifies the FFTB to be modified. The realbuf and imagbuf
parameters are pointers to new real data and imaginary data storage areas respectively.
If a null pointer is passed, the corresponding buffer pointer is not changed in the FFTB
structure. It is important that the modified pointers always point to a memory area of
sufficient length.



86 Digital Signal Processing Support

Example FFT Application

The following code uses a Fast Fourier Transform in a custom command. This custom
command accepts three DAPL parameters: an input pipe, the size of the fast Fourier
transform, and an output pipe. The input to the transform is real-valued data from a
pipe. The results placed into an output pipe are the N points of the transform’s
magnitude. Note that this is different from the ‘mode 5’ transform of the built-in
DAPL FFT command, which reports only N/2 output terms. Speed is considered most
important in this application, so the fast solution is selected, with a slight accuracy
penalty. The input data is not periodic, so a window is applied.

/*  FFT2 (p1, n, p2)
*      - computes magnitude of a forward FFT transform
*      - data arrives in pipe p1
*      - size of transform is n
*      - output placed into pipe p2
*      - output is magnitude values
*/
#include <cdapcc.h>
#define   NULL    0
#define   FOREVER 1

void main (PIB **plib)
{
    void **argv;
    int  argc;
    PIPE *in_pipe;      /* Input pipe, real data */
    PIPE *out_pipe;     /* Output pipe, magnitude data */
    int  n;             /* Size of FFT input and output
block */

    PBUF *inbuf, *outbuf;
    FFTB *fft;
    int  *databuf;

    /* PARAMETER PROCESSING SECTION */
    argv = param_process (plib, &argc, 3, 3,
        T_PIPE_W,T_CONST_W, T_PIPE_W);
    in_pipe = (PIPE *) argv[1];
    n = *(const int *) argv[2];
    out_pipe = (PIPE *) argv[3];



Digital Signal Processing Support 87

    /* INITIALIZATION SECTION */
    /* Prepare pipes to share a buffer with the FFT*/
    pipe_open (out_pipe, P_WRITE);
    pipe_open (in_pipe, P_READ);

    inbuf = pbuf_open(in_pipe, n);
    outbuf = pbuf_open(out_pipe, 0);
    databuf = pbuf_get_data_ptr(inbuf);
    pbuf_set_data_ptr(outbuf,databuf);
    pbuf_set_min_cnt(inbuf,n);
    pbuf_set_max_cnt(inbuf,n);
    pbuf_set_min_cnt(outbuf,n);
    pbuf_set_max_cnt(outbuf,n);

    fft = fft_init( n, databuf, NULL,
        WINDOW_HANNING,         /* Use Hanning window*/
        FFTDIR_FORWARD,         /* Use forward transform */
        FFTSOLN_FAST,           /* Accuracy not critical */
        FFTPOST_MAGNITUDE,      /* Compute magnitudes */
        FFT_REALIN|FFT_FULLOUT);/* n reals in, n reals out
*/
    if (fft == NULL )
      param_error();

    /* RUN-TIME PROCESSING LOOP */
    while ( FOREVER )
    {
        pbuf_get(inbuf);
        fft_request(fft);
        while (!fft_status(fft))  task_switch();
        fft_receive (fft);
        pbuf_set_cnt(outbuf,n);
        pbuf_put(outbuf);
    }
}

The Fast Fourier transform is the basis for many powerful signal processing
algorithms. The following example illustrates a cepstrum computation using a fast
Fourier transform. Cepstrum is useful for some types of mechanical vibration analysis.
The cepstrum of an input signal is computed by:

• performing a forward Fourier transform of an input signal,
• computing the logarithm of the power of each input frequency component,
• performing an inverse Fourier transform on the logarithm data.



88 Digital Signal Processing Support

Some floating point operations are required, so this command must be compiled using
the FP library option as described in Chapter 12.

The computation is applied to non-periodic data, so either a built-in window operator
or a user-supplied vector must be specified. This example shows how to access
window vector information specified by a VECTOR command.

The following listing of the cepstrum custom command has a few interesting features.
FFTPOST_POWER post-transform processing is applied, but the FFT_FULLOUT option
is used to preserve term N/2 and to avoid combining power terms from the low and
high end of the transform spectrum. Data storage is provided for N long output values
(rather than N word values), but only half of this storage is used for data input. The
even symmetry of the power data is still present after the logarithm operation is
applied, and this fact is used to advantage to avoid unnecessary log function
evaluations. When an FFT is applied to data with even symmetry (forward or reverse),
the resulting imaginary terms are zero, hence the inverse transform generates a full set
of N real output values.

/*
** CEPSTRUM (p1,
n, window, p2)
**     - compute cepstrum from input data
**     - real data taken from pipe p1
**     - n is size of FFT input and output block
**     - window specifies built-in option or VECTOR
**     - output sent to pipe p2
*/
#include  <math.h>
#include  <cdapcc.h>
#define   NULL   0L
#define   FOREVER  1



Digital Signal Processing Support 89

void main (PIB **plib)
{
    void **argv;
    int  argc;

    PIPE *in_pipe;
    PIPE *out_pipe;
    int  n;
    unsigned long window;

    VECTOR *windvect;
    PBUF *inbuf, *outbuf;
    FFTB *fft1, *fft2;
    int  *int_buffer;
    long *long_buffer;

    double logpower;
    double scale = 16384.5 / log(32767.0);
    int  I;

    /* PARAMETER PROCESSING SECTION */
    argv = param_process (plib, &argc, 4, 4,
        T_PIPE_W, T_CONST_W, T_CONST_W|T_VECTOR_L,
T_PIPE_W);

    in_pipe = (PIPE *) argv[1];
    n = *(const int *) argv[2];
    out_pipe = (PIPE *) argv[4];

    if (param_type(plib,3)==T_CONST_W)
    {   /* Predefined window type */
        window = *(const int *) argv[3];
    }
    else
    {   /* User-defined window data */
        windvect = (VECTOR *) argv[3];
        if ( vector_length(windvect) != n )
          param_error();
        window = (unsigned long) windvect;
    }



90 Digital Signal Processing Support

    /* INITIALIZATION SECTION */
    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);

    /* Open pipes sharing a buffer for n longs */
    inbuf  = pbuf_open(in_pipe, 2*n );  /* Extra storage */
    outbuf = pbuf_open(out_pipe,0);
    pbuf_set_min_cnt(inbuf,n);
    pbuf_set_max_cnt(inbuf,n);
    pbuf_set_min_cnt(outbuf,n);
    pbuf_set_max_cnt(outbuf,n);
    int_buffer = pbuf_get_data_ptr(inbuf);
    pbuf_set_data_ptr(outbuf,int_buffer);
    long_buffer = (long *) int_buffer;

    /* initialize forward transform options */
    fft1 = fft_init( n, int_buffer, NULL,
        window,           /* Passed window parameter */
        FFTDIR_FORWARD,   /* Use forward transform */
        FFTSOLN_ACCURATE, /* Accuracy most important */
        FFTPOST_POWER,    /* Convert to 32-bit POWER */
        FFT_REALIN|FFT_FULLOUT );
    if (fft1 == NULL )
        param_error();

    /* initialize reverse transform options */
    fft2 = fft_init( n, int_buffer, NULL,
        NULL,             /* No window operation */
        FFTDIR_REVERSE,   /* Use reverse transform */
        FFTSOLN_ACCURATE, /* Accuracy most important */
        FFTPOST_REAL,     /* Select real components */
        FFT_REALIN|FFT_FULLOUT);
    if (fft2 == NULL )
        param_error();



Digital Signal Processing Support 91

    /* RUN-TIME PROCESSING LOOP  */
    while ( FOREVER )
    {
        /* transform real valued input data to power */
        pbuf_get(inbuf);
        fft_request(fft1);
        while (!fft_status(fft1))  task_switch();
        fft_receive (fft1);

        /* compute the logarithms and then apply symmetry */
        for (i=0; i<=n/2; I++)
        {
            logpower = (double) long_buffer[i];
            if (logpower > 0.0)  logpower = log(logpower);
            int_buffer[i] =  (int) (logpower * scale);
        }
        for (i=1; i<n/2; ++I)
            int_buffer[n/2+i] = int_buffer[n/2-i];

        /* perform the inverse transform and send results */
        fft_request(fft2);
        while (!fft_status(fft2))  task_switch();
        fft_receive (fft2);
        pbuf_set_cnt(outbuf,n);
        pbuf_put(outbuf);
    }
}



92 Digital Signal Processing Support

Using Finite Impulse Response Digital Filters

The Developer's Toolkit for DAPL provides a set of functions for 16-bit finite impulse
response (FIR) digital filtering using a shift register filter structure. A shift register is a
region of memory which records a sequence of sample values. The filter calculates an
output value by multiplying the sequence of samples in the shift register, term by term,
with a corresponding sequence of coefficients from a pre-defined vector. The pairwise
products are then summed to yield a calculated result. For subsequent calculations, the
oldest data are discarded from the shift register, and new data are introduced to
replace them. The process repeats. The Developer's Toolkit for DAPL functions take
care of shift register management and numerical computations. The client custom
command must provide the data and define the filter characteristics.

FIR filtering is performed by means of the following sequence of functions:

•  fir_initfir_initfir_initfir_init
•  fir_requestfir_requestfir_requestfir_request
•  fir_statusfir_statusfir_statusfir_status
•  fir_receivefir_receivefir_receivefir_receive

The fir_initfir_initfir_initfir_init function defines the characteristics of a FIR filter. This function is
executed once during command startup.

The fir_requestfir_requestfir_requestfir_request function supplies the FIR filter with a block of data in a transfer
buffer, and initiates FIR filter computation, using the filter characteristics previously
defined by the fir_initfir_initfir_initfir_init function.

The remaining two functions guarantee synchronization between the DAPL
computations and the custom command. The fir_statusfir_statusfir_statusfir_status function verifies that the
FIR computation is complete, and reports the number of computed results which were
generated. The fir_receivefir_receivefir_receivefir_receive function guarantees that the FIR filtering results are
stored in the transfer buffer and ready for further processing by the custom command.

FIR Filter Initialization

The fir_initfir_initfir_initfir_init function defines the properties of a FIR filter and its shift register in
an information structure of type FIRB. This structure maintains information about
sampled data, filter coefficients, processing options, and numerical operations. The
fir_initfir_initfir_initfir_init function returns a pointer to the allocated FIRB structure. The pointer is
used by all subsequent filter operations.



Digital Signal Processing Support 93

The parameter list of the fir_initfir_initfir_initfir_init function has the form:

fir_init( coeffs, length, scale, decimate );

The coefficients in vector  coeffs determine the filter’s output properties. The
length parameter defines the length of the coeffs vector, which in turn fixes the
length of the filter shift register. The values contained in the vector determine the
filter’s frequency and transient response. FIR filter design technique described in any
DSP textbook can be used to derive the coefficients. Alternatively, the FGEN utility
from Microstar Laboratories can be used to design the coefficient vector and analyze
filter performance. The coefficients may be placed into an array in the custom
command, or in a VECTOR in a DAPL command file. The vector computed during the
design process is encoded as an array of signed 16-bit fixed-point fractions with 15
bits after the implied binary point. The coefficients can also be thought of as ordinary
integer values in the range -32768 to +32767 with an extra scale factor of 1/32768 to
be applied later.

The number of bits required at intermediate stages of filter calculations can become
quite large. To control the growth in the number of bits, there is a scaling constraint
upon the values of the coefficients.

For the case of small filters, the sum of the absolute values of the coefficients should
produce a fixed-point value less than 2.0, in the binary fraction notation. Equivalently,
if the coefficients are thought of as ordinary signed integers, the sum of the absolute
values of the vector coefficients must not exceed 65535. If the filter vector has this
property, a  scale parameter value of 1 is appropriate. Equivalently, the scale
parameter may be set to zero to indicate “no scaling is applied.”

For some filter designs, particularly long filters, scaling the filter terms as described
above forces many coefficients to be very small, leading to a loss of precision and
degraded performance. When this is the case, the coefficient values may be multiplied
by a convenient power of two. This allows additional bits of precision in the filter
representation. The scaling multiplier, in addition to being a power of two, should be
less than the filter length, and must be chosen so that the filter coefficient with largest
absolute value is representable in a 16-bit format. The scaling multiplier must then be
specified as the scale parameter to the fir_initfir_initfir_initfir_init function. Note that the FGEN
utility can be instructed to compute an appropriate scaling factor automatically.

For example, the following filter characteristic is not properly scaled:

int vfilt [11] =  {7088,13511,19441,22800,14355,0,-14355,
    -22800, -19441,-13511,-7088};



94 Digital Signal Processing Support

The sum of the absolute values of coefficients is 154390, which is greater than 65535.
Since this is a relatively short filter, it may be reasonable to scale the coefficient
values by the ratio 65534/154390 to obtain the following scaled filter characteristic:

int vfilt [11] =  {3009,5735,8252,9678,6093,0,-6093,-9678,
    -8252,-5735,-3009};

Now the sum of the absolute values of the coefficients is 65534, which conforms to
the scaling constraint. Alternatively, 154390/4 is 38597, which is less than 65535, so
the original coefficients can be used with a scaling factor of 4.

Filters for which the signed sum of the coefficient vector terms is 32768 times the
scale parameter value have the property that the gain of the filter at zero frequency is
1.0 exactly. Most lowpass filters are designed to have this property, so that they do not
alter the magnitudes of low frequency components.

Mathematically, the operation applied by a FIR filter is a discrete convolution. This
operation can be interpreted as term-by-term multiplication between a discrete-time
sequence and another time-reversed discrete-time sequence. From this point of view,
the terms in the filter coefficient vector may be interpreted as the time-reversed
sequence of output values that result when an impulse (an isolated maximum input
sample surrounded by all zeroes) is applied to the filter. This fact is not relevant to
symmetric filters, as designed by the FGEN utility, because symmetric filters are the
same in forward and reverse order.

The last parameter of the fir_initfir_initfir_initfir_init function is called the “decimation factor.” FIR
filters are particularly well suited for lowpass filters. For example, to prevent aliasing
of high frequency noise into low frequencies prior to performing an FFT analysis, it is
very common to sample data at a high rate and apply digital filtering to eliminate the
high frequency components. After this lowpass filtering, fewer samples are necessary
to accurately represent the cleaned signal, so the sample rate can be reduced by taking
one sample then skipping a constant number of samples in a cyclic manner.  The
length of this cycle is specified by the decimate parameter. If decimation is not
required, this parameter should be 1, or alternatively 0, to indicate “no decimation
factor.”

FIR Filter Computation

After completing the filter initialization and entering the run-time loop, the
fir_requestfir_requestfir_requestfir_request function is used to initiate computations. The parameter list of the
fir_requestfir_requestfir_requestfir_request function has the form:

fir_request( fir, data, count );



Digital Signal Processing Support 95

The fir parameter is the pointer returned by the fir_initfir_initfir_initfir_init function. The data
parameter is a pointer to an array of new data to be added to the filter shift register.
For example, if data is obtained from a pipe using a get_bpipe function, the data
parameter may point directly to the data buffer in the pipe’s PBUF structure. The
count parameter specifies the number of new data samples to add to the filter shift
register.

A number of initial samples are required to fill the shift register before processing can
begin. For example, consider a symmetric filter of length 41. The first 40 samples,
samples 0 through 39, are required to prepare the shift register. The arrival of the 41st
sample, sample 40, fills the shift register and allows the first computation to proceed.
This calculates a filtered value corresponding to the center location of the filter, the
twenty-first sample, at sample location 20. In other words, the filter does not produce
outputs corresponding to the first 20 input samples, 0 through 19. This delay is called
“linear phase” or “group delay” in the linear filtering literature, but its practical effect
is shifting (delaying) the output data stream by 1/2 the filter length. If this delay is
important, for example, when synchronizing the filtered signal to the original signal
for comparison or triggering operations, a custom command must compensate. It may
inject extra values into the filter (for example, send the first sample value to the filter
an extra 20 times), or replicate extra output values (for example, sending the first filter
output to the command output pipe an extra 20 times).

Once the shift register is full, one result can be computed. One result is generated for
each additional sample (when there is no decimation).

The amount of output data is reduced if a decimation factor greater than 1 is specified
for the filter. Decimation has the effect of bypassing some of the computations. Before
each computation, a number of samples equal to the decimation factor is removed
from the shift register and this same number of new samples must be added. In the
event that a new data block does not have enough samples to refill the shift register,
no computed result can be returned until more data become available.

Latency of a filtering command depends on the filter design and on the manner that
data is collected and sent for processing. Collecting samples into longer blocks
requires fewer service calls and allows more efficient processing, but results are
delayed until the entire block is processed. Lowest latency is attained by passing each
datum to the filter immediately when received.

The inherent delay of the filter has an impact on latency. For the previous example of
the symmetric filter, 20 extra samples (samples 21 through 40) were required before
the filtered result at sample 20 could be computed. This 20-sample delay directly
affects the latency of the filtering process.



96 Digital Signal Processing Support

FIR Filter Status

After a call to the fir_requestfir_requestfir_requestfir_request function, the fir_statusfir_statusfir_statusfir_status function will report the
number of computed results which are available.

If the filter has not completed the computations for the data block, the fir_statusfir_statusfir_statusfir_status
function returns a negative code. If the data provided to the filter shift register did not
fill the shift register, hence no outputs, the fir_statusfir_statusfir_statusfir_status function returns zero. If the
filter computations for the data block are complete, a positive count of computed
results is returned.

Accessing FIR Results

The fir_receivefir_receivefir_receivefir_receive function guarantees that all computed results reported by the
fir_statusfir_statusfir_statusfir_status function are stored and available to the custom command, replacing data
originally passed to the FIR filter by the call to the fir_requestfir_requestfir_requestfir_request function. The data
array must not be used for other purposes between the fir_requestfir_requestfir_requestfir_request and
fir_receivefir_receivefir_receivefir_receive function calls.

If portability between different Data Acquisition Processor models is not a
consideration, and the custom command is intended for operation on a specific Data
Acquisition Processor model which does not use a separate processor for DSP
computations, the fir_statusfir_statusfir_statusfir_status and fir_receivefir_receivefir_receivefir_receive steps may be omitted. In general,
skipping these steps is not recommended practice. When there is no separate
processor for DSP computations, computed results are available immediately upon
return from the fir_requestfir_requestfir_requestfir_request function. The return code from the fir_requestfir_requestfir_requestfir_request
function reports the number of samples available, exactly as described above for the
fir_statusfir_statusfir_statusfir_status function. When a separate processor for DSP computations is used, the
fir_requestfir_requestfir_requestfir_request function returns a negative code.

Additional FIR Operations

Two additional functions provide supplementary control over FIR filter operations.
These are specialized functions not needed for most filtering applications.

The fir_changefir_changefir_changefir_change function may be used to change the properties of the filter without
disturbing the status of the filter shift register. This could be useful, for example, to
allows a user application to select from a number of smoothing (lowpass) filter
characteristics for purposes of data display.

Changing the length of the filter or the decimation factor can change data buffering
requirements, leading to inefficiency, or in the worst case, insufficient storage to



Digital Signal Processing Support 97

continue filter operation. To avoid storage problems, initialize the filter using the
longest filter vector and largest decimation factor that the application will use, then
apply fir_changefir_changefir_changefir_change to select the actual characteristics to be used before starting the
filtering run-time loop. This guarantees that the memory allocations for the filter are
adequate to cover the worst case. Extra memory will not degrade filter performance
for smaller filters. Keep in mind that changing the filter length also affects the delay
inherent in the filter, and can affect data synchronization.

Changing filter characteristics should be considered a relatively expensive operation,
roughly equal in complexity to performing a filter computation. It should be done with
great care. The fir_changefir_changefir_changefir_change function may perform extra computations to examine the
new filter characteristic and select numerical techniques to apply. The extra
computation could have an effect on latency.

The other specialized function is fir_advancefir_advancefir_advancefir_advance . This function is useful in
applications that must reduce data rates. For example, an application may need to
perform an FFT analysis where there is a very high frequency component. In order to
preserve the high frequency information, samples must be captured at a high sampling
rate, but this rate may be much too fast for a PC application to display all of the
results. The fir_advancefir_advancefir_advancefir_advance function has the effect of advancing the FIR filter shift
register, discarding the specified number of old samples, without performing any filter
computations. This guarantees that old, unneeded data are purged from the filter shift
register when filtering operations resume.

One of two situations will result after using fir_advancefir_advancefir_advancefir_advance. The first situation is that
some of the data currently in the shift register are needed to resume computations. In
this case, the application should continue to provide data to the FIR filter in the
normal manner until the shift register fills, at which point computations resume
automatically. The second situation is that none of the old data present in the shift
register will be required again. In this case, the FIR filter is left in an “empty” state,
and it must be refilled completely. It also may be necessary to purge additional
samples from the data source after the shift register is empty. The return value from
the fir_advancefir_advancefir_advancefir_advance function reports the number of items that must be purged from the
data source after calling fir_advancefir_advancefir_advancefir_advance. If the return value is zero, removing data
from the data source is not necessary.

For example, in the following sequence, filtering without decimation, 32 filtered
values are computed and then the next 96 values are skipped.



98 Digital Signal Processing Support

/* Process 32 filtered values */
fir_apply(fir, coeff_array, 32);
/* Skip the next 96 values */
more_to_skip = fir_advance(fir, 96);
if ( more_to_skip)
  pipe_rem( inpipe, more_to_skip);



Digital Signal Processing Support 99

A Data Smoothing Application

In this example application, a data stream is obtained by sampling a continuous
process. The measurements are contaminated by occasional ‘noise spikes’ which
interfere with quality control statistics to be computed from the measurements. A
statistical study demonstrated that a local smoothing operation is effective in reducing
the impact of the noise spikes. The selected filter is a seven-term interpolating filter
that, in effect, performs a local quadratic least-squares fit to the data, then replaces the
center term with the center value of the curve fit.

The least squares fitting process results in a linear filter formula defined by the
following equation.

X0  =  ( -2 X -3  +  3 X -2  +  6 X -1  +  7 X 0  +  6 X 1  +  3 X 2  +  -2 X 3  ) / 21

The linear formulation means that the filtering operation has an alternate interpretation
in terms of lowpass filtering, and FIR filtering features can be used to implement this
filter.

For properly scaling the filter, the coefficients need to sum to something less than 2.0
in the binary fraction notation. Using 32768 as a normalizing multiplier, the
coefficients take on the following representation in the custom command:

int ls7filt[7] =  { -3121, 4681, 9362, 10924, 9362, 4681,
-3121 };

These coefficients sum to 32768, which means that the zero frequency gain of the
filter is exactly 1. The absolute values sum to 45252. This means that for some
frequencies, it is possible that a very large amplitude signal could cause overflow, but
because the coefficients are properly scaled, the overflow will be correctly saturated to
the appropriate negative or positive limit. The application might be able to limit the
input signal to the range -23000 to 23000, which would eliminate the possibility of
overflow. Tests with actual data might also demonstrate that overflow is not a problem
for the special mix of frequencies present.



100 Digital Signal Processing Support

The following custom command implements the filter.

/*
**  LSFILTER (p1, p2)
**   - reads data from pipe p1
**   - applies 7-point least-squares smoothing
**   - places results into pipe p2
*/
#include  <cdapcc.h>
#define   NULL   0L
#define   FOREVER  1

static int  ls7vect[7] =
{  -6241, 9362, 18724, 21845, 18724, 9362, -6241 } ;

void main (PIB **plib)
{
    void **argv;
    int  argc;

    PIPE *in_pipe;        /* Passed parameters */
    PIPE *out_pipe;
    FIRB *fir;            /* To be initialized */
    int  avail;           /* Utility variables */
    int  I;

    /* Using an array avoids compiler aliasing */
    int  sample[1];

    /* PARAMETER PROCESSING SECTION */
    argv = param_process (plib, &argc, 2, 2,
        T_PIPE_W, T_PIPE_W);
    in_pipe = (PIPE *) argv[1];
    out_pipe = (PIPE *) argv[2];

    /* INITIALIZATION SECTION */
    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);

    fir = fir_init (ls7vect,
        7, /* length */
        2, /* scale factor */
        0  /* no decimation */ );
    if (fir == NULL)
        param_error();



Digital Signal Processing Support 101

    /*
    ** Compensate for the 3-sample delay of a 7-term
    ** symmetric filter.
    */
    for ( i=0; i<3; ++i) pipe_put(out_pipe,0L);

    /* RUN-TIME PROCESSING LOOP  */
    while ( FOREVER )
    {
        /* Send each input sample to the filter */
        sample[0] = (int) pipe_get(in_pipe);
        fir_request(fir,sample,1);
        while ((avail=fir_status(fir))<0)
            task_switch();
        fir_receive(fir);

        /* Output any returned value */
        if (avail>0)
            pipe_put(out_pipe,sample[0]);
    } /* end of run-time loop */
}



102 Digital Signal Processing Support

An EEG Filtering Example

The purpose of this second example is to monitor alpha brain waves. This might be
used, for example, to detect REM sleep, or as biofeedback to assist relaxation. As in
most medical applications, safety is the most important consideration, and special
high-impedance instrumentation amplifiers provide electrical isolation to protect the
patient. These amplifiers are presumed to have a natural high-frequency rolloff which
attenuates high frequencies, avoiding aliasing problems when sampling at 60 Hz.

The digital filter selects frequencies in the range 8 to 11 Hz. There is a slight rolloff at
12 Hz, with very high attenuation beyond 12 Hz. The transition to the stopband at
lower frequencies is more gradual.

In this example, the data vector is specified in the DAPL configuration file, so that it
can be shared by a number of signal channels.

VECTOR  EEG = ( -1, 37, 50, -43, -180, -163, 89, 366, 339,
  -50, -449, -445, -43, 305, 231, -74, -69, 412, 762, 196,
  -1175, -2067, -1151, 1370, 3450, 2882, -454, -4015, -4620,
  -1384, 3216, 5355, 3216, -1384, -4620, -4015, -454, 2882,
  3450, 1370, -1151, -2067, -1175, 196, 762, 412, -69, -74,
  231, 305, -43, -445, -449, -50, 339, 366, 89, -163, -180,
  -43, 50, 37, -1 )

The signed sum of the coefficients is greater than 32768, so this filter has the effect of
slightly amplifying alpha frequencies as it attenuates other frequencies. This leaves the
filter output subject to possible saturation, but this is considered an unimportant
transient condition. The absolute sum of the coefficients equals 65531, so the filter
output will saturate correctly if overflow does occur. Precision of the frequency
response is not critical, so scaling is not applied. This application is not sensitive to
the delay induced by the filter, so no phase correction is applied.



Digital Signal Processing Support 103

The following is a listing for the alpha wave filtering command:

/*
**  BWAVE (p1, vect, p2)
**     - selects 8-12 Hz frequencies from 60 Hz sampling
**     - filter vector provided by DAPL command file
**     - filters data from p1
**     - places results into pipe p2
*/
#include  <cdapcc.h>
#define   FOREVER         1
#define   NULL            0L
#define   BUFFER_LENGTH   128

void main (PIB **plib)
{
  void **argv;
  int  argc;

  PIPE *in_pipe;
  PIPE *out_pipe;
  VECTOR *vect;
  FIRB *fir;
  PBUF *inbuf;
  PBUF *outbuf;
  int  v_length;
  int  *v_start;
  int  avail;
  int  *dataptr;
  int  datacount;

  /* PARAMETER PROCESSING SECTION */
  argv = param_process (plib, &argc, 3, 3,
      T_PIPE_W,T_VECTOR_W, T_PIPE_W);
  in_pipe = (PIPE *) argv[1];
  vect = (VECTOR *) argv[2];
  out_pipe = (PIPE *) argv[3];

  /* INITIALIZATION SECTION */
  /* Determine the filter length from the DAPL vector */
  v_length = vector_length(vect);
  v_start = vector_start(vect);



104 Digital Signal Processing Support

  /* Prepare pipes with shared input/output buffer */
  pipe_open (in_pipe, P_READ);
  pipe_open (out_pipe, P_WRITE);
  inbuf = pbuf_open(in_pipe, BUFFER_LENGTH);
  dataptr = pbuf_get_data_ptr(inbuf);
  outbuf = pbuf_open(out_pipe, 0);
  pbuf_set_data_ptr(outbuf,dataptr);
  pbuf_set_min_cnt(outbuf, 1);
  pbuf_set_max_cnt(outbuf, BUFFER_LENGTH);

  /* Set up filter to use shared vector */
  fir = fir_init (v_start, v_length,
    0, /* no scaling */
    0  /* no decimation */ );
  if (fir == NULL)
    param_error();

  /* RUN-TIME PROCESSING LOOP  */
  while ( FOREVER )
  {
    /* Apply input samples to the filter */
    pbuf_get(inbuf);
    datacount = pbuf_get_cnt(inbuf);
    fir_request(fir,dataptr,datacount);
    while ((avail=fir_status(fir)) <0)
      task_switch();
    fir_receive(fir);
    if ( avail>0 )
    {
      pbuf_set_cnt(outbuf,avail);
      pbuf_put(outbuf);
    }
  }  /* end of run-time loop */
}



Real-Time Control 105

8. Real-Time Control

This chapter describes general considerations for using a Data Acquisition Processor
as a component of a real-time system. The Data Acquisition Processor family is
designed both for data acquisition and real-time control applications. Data acquisition
systems place primary emphasis on fast and dependable data capture, with processing
and transmission of acquired data as a secondary priority. In contrast, real-time
control systems must place balanced priority on acquiring data, interpreting the data,
and reporting outputs within given time constraints.

A real-time system is often required to monitor a continuous input quantity by
sampling it at regular intervals. It may be required to respond to input events on many
input channels, with different input rates on each channel. To meet these requirements,
most real-time systems employ "interrupt-driven processing," in which a computing
resource is applied upon demand, and then released for other processing. This
capability provides efficient utilization of a shared computing resource, but sometimes
the CPU cannot be assigned to process an event immediately. The time between the
arrival of the input data and the delivery of the system response is called "latency."

Interrupt-driven control is possible in the native processor of an 80x86-based PC, but
the latency depends on the hardware and software configuration. For example, an
application using DOS extender software on a PC with a 80x286 processor can take
about 250 microseconds to switch between real and protected mode, and during this
time interrupts cannot be serviced. The PC must contend with monitor, keyboard,
disk, and real-time clock services, which compete with the control task for CPU
resources. A Data Acquisition Processor, on the other hand, dedicates its full
resources to the control task. The kernel services of the DAPL and DAPL 2000
operating systems are interrupt-driven and highly optimized. Furthermore, the Data
Acquisition Processor provides supplemental processing hardware that can sustain
accurate sampling even when the CPU resource is momentarily dedicated to other
processing.

Processing speed and latency are different measures of system performance.
Processing speed is determined by the average amount of CPU resource that must be
applied to produce each computed result. Processing speed is optimized by collecting
a large number of data samples, then processing them all at once in a highly-efficient
processing loop. On the other hand, latency is introduced while waiting for samples to
be collected for processing. Every real-time application must make a design trade-off
between processing speed and response latency. In Chapter 9, the BPID2 processing



106 Real-Time Control

command illustrates one application that compromises response latency for individual
inputs to optimize the response latency for a large block of input channels.

Another characteristic of many real-time control systems is asynchronous events.
Real-time software systems that attempt to anticipate every possible combination and
sequence of inputs and outputs can become hopelessly difficult. One strategy for
coping with this complexity is to factor the control process into a number of separate
processes that (in concept) run in parallel, as independent tasks, with modules
interacting through carefully controlled interfaces. DAPL provide exactly these
services. Each processing command or downloaded custom command is implemented
as a separate task. DAPL pipes serve as the interfaces that synchronize data exchange
between tasks.

There are costs associated with the multitasking strategy. The software system must
perform a certain amount of computation to maintain information about the identities
of the various tasks, to select tasks for processing, and to save information about the
state of each task before suspending it and assigning the CPU resource to another task.
The task-switching computation is small, but it can become significant as more tasks
are added and as task switching occurs more frequently. If DAPL tried to perform a
task switch each time a data sample arrived, all of the CPU resource could be
consumed by the task switching, with no CPU resource remaining to process the data.

To minimize the cost of task-switching and reserve CPU resources for processing
operations, DAPL uses a simple task management scheme. Every processing task is
given an opportunity to process the data available to it. The task will be suspended
while it waits for data to arrive or when it voluntarily releases control by calling the
task_switchtask_switchtask_switchtask_switch function. To prevent any one task from consuming too many resources,
DAPL enforces a limit on the amount of CPU time that an individual task can
consume at any one opportunity.

The DAPL and DAPL 2000 operating systems provide means of adjusting the trade-
offs between processing speed and latency. DAPL 2000 provides SCHEDULING,
QUANTUM and BUFFERING options. DAPL version 4 provides two pre-defined
combinations of these.

The SCHEDULING option may be set to ADAPTIVE or FIXED. The ADAPTIVE
scheduling mode selectively schedules tasks in an effort to balance the flow of data
among all tasks. If there is a relatively balanced data flow, and real-time events occur
regularly, this strategy this tends to yield very efficient processing. However, there is
no analytical guarantee of when any given task will be scheduled to execute. Latency
could be very large for a task that handles relatively infrequent real-time events,
because this task has very low data flow and is scheduled less often. The FIXED
scheduling option guarantees that all tasks are scheduled equally often. It greatly



Real-Time Control 107

reduces the uncertainty of response to critical real-time events, but tends to use more
CPU capacity for task switching overhead, leaving less computing resources for other
processing.

The QUANTUM option sets a limit on the interval of time that an individual task can run
uninterrupted. If a task requires more than this amount of time, it is forced to
temporarily release the CPU, allowing other tasks to run. When there is a mix of real-
time and computational tasks, usually the computational processing should not delay
real-time response. In such cases, the QUANTUM option should be set to a relatively
small number, so that the computational tasks do not hold the CPU too long.  On the
other hand, the real-time system could have a computation that is time-critical. For
greatest efficiency and lowest latency in this critical task, the task should run to
completion. In this case, the QUANTUM option should be set to a relatively large
number. Note that tasks that have nothing to do will release the CPU voluntarily, so
there is ordinarily no time penalty for having a larger QUANTUM value. However, most
analytical methods for guaranteeing real-time performance depend on bounding the
amount of time that tasks can run, and larger bounds reduce the effectiveness of
analytical methods.

The BUFFERING option specifies the amount of storage to be used for data buffering
in pipes. Most real-time systems process data quickly without backlog, so setting
BUFFERING to OFF is typical for real-time systems. Some systems will accumulate
blocks of data, but then must process the data as efficiently as possible once the block
is filled. Because longer blocks are processed more efficiently, such applications
should probably select the MEDIUM or LARGE buffering options.

Under DAPL, each task will either complete all operations on the available data, or
will be interrupted at intervals to allow other tasks to run. In most real-time systems,
the desirable case is the one in which all available input data is processed in one
scheduling quantum, because results become available quickly. It is the other case,
however, which guarantees a predictable response time. In the worst case, a data
sample is captured just after the task to process it finishes execution. Because the task
did not receive that input sample, processing of that sample is delayed until all other
tasks are given a chance to run.  At that point, the first task will receive the input value
and complete its processing. Assuming that the computations for one value can be
completed in one task-scheduling interval, and assuming that N tasks are operating,
the response will be available in at most N scheduling intervals.

There are a number of important conclusions. For a given configuration of tasks,
response to an input is guaranteed within a fixed time interval. Since the calculation of
that interval assumes that all tasks use the maximum amount of CPU at each
opportunity, which is almost never the case in practice, statistical measures of
response time are typically much better than the worst-case measures.



108 Real-Time Control

Strategies for Improving Real-Time Response

Response time of a multitasking real-time system under DAPL depends on the
scheduling, the number of tasks that must process each value, and the total number of
tasks that must be scheduled. Strategies for improving real-time response result from
adjusting these factors.

The first strategy is taking advantage of the SCHEDULING and QUANTUM options to
control the scheduling quantum and strategy. Most real-time applications will select a
FIXED scheduling strategy and relatively small scheduling quantum.

The second strategy is reducing the number of tasks. The TASKSTAT command
provided by DAPL will show the number of tasks present in your configuration. If
there are several processing tasks, it may be possible to achieve a faster real-time
response by building a custom command that combines the function of those tasks.

The third strategy is control of the CPU resource in custom commands. If your custom
command cannot continue to perform computations, it is important for it to call
task_switchtask_switchtask_switchtask_switch to release the CPU to other tasks, so that the other tasks are not
delayed. In some cases, however, a small delay may be acceptable. For example, if
data values are processed in pairs, but only one data sample has arrived, it may be
better to wait in a loop for a few cycles until the second sample arrives. Or, if other
tasks must wait for the first task to obtain data, it is probably better for the first task to
wait in an active loop, since scheduling the other tasks will serve no useful purpose.

A fourth strategy is turning off DAPL multitasking. This reduces the multitasking
overhead to zero and provides the fastest possible speed, but it also turns off all of the
services that multitasking provides. This advanced topic is detailed in Chapter 10.



Real-Time Control 109

Using Floating Point

On Data Acquisition Processor models which have a Floating Point Unit (FPU),
DAPL will use it to perform floating point operations. The FPU can perform floating
point operations almost as fast as the main processor performs ordinary instructions.
This capability can be very attractive in some control applications.

There are some special considerations for real-time response when using hardware-
supported floating point. The floating point unit is functionally a separate processor. It
runs in parallel with the general purpose Integer Processing Unit (IPU), beginning a
floating point operation when the IPU detects one in the instruction stream. Operation
of the two units continues in parallel until the IPU detects another floating point
instruction. At that point, if the FPU has not finished its previous operation, the
integer processing unit must wait. In most cases, the delays are just a few machine
cycles, but some FPU instructions take hundreds of machine cycles to complete.

Special floating point instructions are used to store and reload the state of the floating
point unit after task switching has occurred. Each computation performed by the FPU
alters the internal state of the FPU. If the DAPL scheduler switches from one task
which is using the FPU to a second task that also needs the FPU, the state of the
computations for the first task must be saved and the state of the second task's
computations must be loaded. The storing and restoring are performed automatically
by DAPL, but only when needed. FPU state storing and recovery do not occur at all if
fewer than two tasks use the FPU. FPU state storing and recovery are infrequent if
tasks perform floating point computations at different times.

The worst case for real-time control occurs when the first task executes a floating
point instruction immediately before a task switch is due. Once the task begins the
storing and restoring operation, it must perform both operations before the task
switching can occur. If the next task needs to execute a floating point instruction as it
resumes execution, another storing and restoring operation occurs. The combination
of these operations in the two tasks can introduce additional response latencies of up
to 25 microseconds.





Customizing PID Control 111

9. Customizing PID Control

This chapter will show how Developer's Toolkit for DAPL services can be used to
configure customized Proportional-Integral-Derivative (PID) control applications. In
the process, this chapter illustrates the design and construction of a practical real-time
controller for several simultaneous PID loops. The structure of this example can serve
as a model for other real-time applications as well.

Using Developer's Toolkit for DAPL services, you can configure a control system to
meet special requirements. If more functionality is needed, you can easily extend the
basic controller features, adding functions for data monitoring, nonlinear output
characteristics, or managing a set of control loops. If maximum speed is needed, you
can build a simple configuration, trimmed to the bare essentials.

The essential properties of a PID controller are as follows:

• It produces a control output for each sample of the system output which it
receives.

• The control output increases as the deviation of system output from the setpoint
increases, and reduces as the system output approaches the setpoint. This is
"proportional" or P-correction.

• The controller adjusts the control output to correct for errors that persist over time.
This is "integral" or I-correction.

• The controller adjusts its output to oppose excessively rapid changes in the system
output. This is "derivative" or D-correction.

• The controller's output is a weighted sum of the P-, I-, and D-corrections.

One implementation of PID control is the PID command provided in DAPL. The PID
command is optimized for controlling a single PID loop. Though very general, the
standard PID command has some limitations. It provides great flexibility for
adjustment of parameter values, but there is a small execution speed penalty. Since
each control loop is managed by a separate PID task, there is a correspondingly large
multitasking overhead when the number of loops is large. Higher overhead means that
less CPU capacity is available for managing the control loops, and that the processing
rate is limited.



112 Customizing PID Control

Designing Control Commands

This section will examine the general structure of a control task, and cover the
Developer's Toolkit for DAPL services which are useful in building customized PID
control functions.

The following is a template for custom real-time PID control commands.

Decode command parameters
Set up system structures: pipes, buffers, etc.
Set up PID control parameter structures
Establish initial PID parameter values
Real-time update loop

This is not much different from the structure of any custom command built with the
Developer's Toolkit for DAPL. The third and fourth steps set up and initialize two
special data structures which are required for PID control. The last step is a process
loop, which will read digitized samples, perform the control computations, and
produce the control output.

The PID data structure is a DAPL system structure required to maintain internal state
information for a PID control loop. The pid_openpid_openpid_openpid_open function must be called once for
each PID control loop, to allocate and initialize the corresponding PID structure. The
returned pointer must be saved for use by other PID functions. The pid_openpid_openpid_openpid_open
function also performs some PID initializations which require an estimate of the
output of the controlled system at start-up. In some cases, you will have a good
estimate for this value, for example, when the system always starts with its output at
zero. In other cases, you will not have this information, and must read a sample from
the input pipe at command start-up.

One or more PIDCOEF data structures are needed to organize PID control parameters
in the custom command's local memory, and to install the parameter values using the
pid_tunepid_tunepid_tunepid_tune function. The pid_tunepid_tunepid_tunepid_tune function must be called for each PID control
loop. The fields in the PIDCOEF structure are:



Customizing PID Control 113

setpoint  desired level of system output
p1  proportional correction gain, multiplier
p2  proportional correction gain, divisor
i1  integral correction gain, multiplier
i2  integral correction gain, divisor
d1  derivative correction gain, multiplier
d2  derivative correction gain, divisor
clamp_lo  output low limit clamp
clamp_hi  output high limit clamp

See the description of pid_tunepid_tunepid_tunepid_tune in the command reference section for more
information about the effects of the control parameters.

Most systems begin in a state of minimum energy, often called a "zero state," "resting
state," or "cold start." This is the state given to the PID structure when it is initialized
by the pid_openpid_openpid_openpid_open function. In most cases, this is the correct assumption. In other
cases, it might be a poor assumption. For example, a system might need to be
manually brought to 90% of its operating speed prior to being switched over to
automatic control. To make the transition as smooth as possible, the pid_presetpid_presetpid_presetpid_preset
function can be used. The pid_presetpid_presetpid_presetpid_preset function takes the known control input
applied to the system, and the known feedback measurement of system output, and
adjusts the internal state of the PID structure to be consistent with these conditions.
Then, when automatic PID operation begins, there will be a smooth transition to the
final setpoint.

After the structures have been initialized, and the control parameters have been
installed, the real-time update loop can begin. The following illustrates the general
form of the real-time loop.

Loop forever
  If new control parameters are available
    Modify parameters
  Endif
  For each control loop
    If a new setpoint parameter is available
      Modify the setpoint parameter
    Endif
    Perform output computations
    Perform other control functions
    Send output to DAC
  End for
End loop forever



114 Customizing PID Control

The real-time update loop runs continuously until it is stopped by DAPL. The loop is
structured as a nest of two loops, with efficient updates in the inner loop, and
relatively infrequent operations which require more computation in the outer loop.

The pid_tunepid_tunepid_tunepid_tune function is used to adjust PID parameters during real-time operation.
Some computation is required to do this, so the adjustments should be done in the
outer loop. Frequent coefficient adjustments could limit the rate at which the
application can run. Some strategies to minimize the impact of parameter changes on
latency and overall speed include:

• Use fixed parameter values.
• Avoid installing parameters when there have been no parameter changes.
• Perform several inner loop passes before installing new parameters.
• If numerous parameter changes must be installed, try to spread the installation

over time, rather than installing everything at once.

When updating PID parameters, all of the values in the PIDCOEF structure must be
valid. If you wish to change parameters, you must save the contents of the PIDCOEF
structure, modify the fields which are to change, and pass the modified structure to the
pid_tunepid_tunepid_tunepid_tune function.

Most PID applications use a fixed setpoint, or at least a setpoint which is adjusted
infrequently. The setpoint is established along with all of the other PID parameters
when pid_tunepid_tunepid_tunepid_tune is called. Other applications, which require frequent or continuous
updates of the setpoint, can use the pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint  function to dynamically
change the setpoint without affecting the other parameters. This function is much
faster than installing the full set of PID parameters, but unnecessary calls still should
be avoided.

The pid_updatepid_updatepid_updatepid_update function is used in the inner loop to compute PID output
corrections and update the internal state of the controller. This function is called once
for each pass of the inner control loop. The parameters are the current value of the
controlled system's output and the PID structure to be updated. The returned value is
the computed PID control output value. Optionally, this value can be modified by an
additional control algorithm. The final result is written to a DAC using the dac_outdac_outdac_outdac_out
function. Asynchronous DAC output is used, to avoid the data buffering and long
response latencies introduced by sustained synchronized output.



Customizing PID Control 115

Example Applications

This section applies the Developer's Toolkit for DAPL PID control functions to two
very different PID control applications. The first controls a single PID loop, using a
minimum configuration for lowest response latency. The second controls a large
number of PID loops, with block updates for maximum efficiency and predictable
performance.

The SPID2 command has the following requirements:

• It operates on a single PID control loop.
• It uses the output sign conventions of the DAPL PID command.
• Its control parameters are fixed when the application is compiled.
• It reads each datum individually.
• It sends control output directly to the DAC channel.
• It starts from a zero initial state.
• It runs continuously after startup.

The SPID2 parameters are defined as follows:

SPID2 (<in_pipe>, <dac_out>)

<in_pipe>  word pipe, feedback from system outputs
<dac_out>  word constant, DAC address for control output

This command follows the general form for real-time commands as described earlier
in this chapter, except that it does not make any control parameter adjustments and
does not perform any supplementary control functions. The parameters are all pre-
defined, built into the custom command in a static PIDCOEF structure. Once the PID
structure is initialized and the pipes are opened, the custom command reads each
feedback sample, computes a response, and updates the analog output.

The following is a listing for the SPID2 command:

/*
**  SPID2 (p1, vdac)
**  Fixed, single-loop PID control command with minimum
latency
**    - parameters fixed at compile-time
**    - reads system output feedback from 'p1'
**    - sends control outputs to DAC specified by 'vdac'
*/



116 Customizing PID Control

#include        "cdapcc.h"

#define  FOREVER        1
#define  OKAY           0
#define  INITIAL_STATE  0
void     main  ( PIB ** );
void     real_time_updates( PIPE * inpipe, int dac_id );
static   PID     * PID_block ;

static PIDCOEF   coeffs =
   {
    10000,   /* setpoint   */
    1000,    /* p1;        */
    100,     /* p2;        */
    4,       /* i1;        */
    100,     /* i2;        */
    200,     /* d1;        */
    100,     /* d2;        */
    0,       /* clamp_lo;  */
    24000    /* clamp_hi;  */
   } ;

/*
** SPID2 command main routine.  Initialize structures for
**   input pipes and PID control.
*/

void  main ( PIB ** plib )
{
    void    ** parameters;          /* parameters from plib
*/
    PIPE    * in_pipe;
    int     dac_id;
    int     n_params;



Customizing PID Control 117

    /* Obtain parameters and open feedback data pipe  */
    parameters =  param_process(plib, &n_params, 2, 2,
          T_PIPE_W, T_CONST_W );
    in_pipe =    (PIPE *) parameters[1];
    dac_id =    * (int *) parameters[2];
    pipe_open(in_pipe,P_READ);

    /* Set up PID control parameters */
    PID_block = pid_open( INITIAL_STATE );
    pid_tune(PID_block, &coeffs);

    /* Perform real-time updates.  Does not return.  */
    real_time_updates( in_pipe, dac_id );

}  /*  End of SPID2 main function  */

/*
** Real-time update loop for PID control.  The output sign
**  is not inverted, consistent with the DAPL PID command.
*/
void   real_time_updates ( PIPE * in_pipe, int  dac_id )
{
    int  sample;

    while (FOREVER)
    {
        sample = (int) pipe_get(in_pipe);
        dac_out ( dac_id , pid_update(PID_block, sample) );
    }  /* End real-time loop */
} /* End of real-time update function */

/* End of SPID2 custom command */

In contrast to the SPID2 command, which controls a single PID loop, the BPID2
command updates a large number of PID control loops. In each pass through the real-
time loop, each PID in a "block" of PID controls is updated once. The response
latency is approximately equal to the time to collect all of the samples plus the time to
compute all of the updates. This delay allows all PID computations to be performed
together, very efficiently, by a single task. It also allows the update computations to
proceed in parallel with acquisition of the next data block. The latency and processing
speed are both much better than would be achieved by an equivalent number of
independent DAPL PID tasks.



118 Customizing PID Control

The BPID2 command has the following requirements:

• It operates on a block of PID control loops, configurable at task startup.
• It uses the output sign conventions of the DAPL PID command.
• It operates with fixed control parameters and setpoint.
• It uses blocked pipe operations to efficiently read system feedback signals.
• It sends control outputs directly to DAC channels.
• It runs continuously after startup.
• It runs in parallel with other DAPL tasks.

The BPID2 parameters are defined as follows:

BPID2 (<in_pipe>, <parameter_pipe>, <blocksize>
  <dac_vector> )

<in_pipe>  word pipe, feedback from system outputs
<parameter_pipe>  word pipe, source of parameter data
<blocksize>  word constant, the number of PID loops
<dac_vector>  word vector, port numbers of output DACs

The command follows the general form for real-time commands, except that it does
not perform any supplementary control functions, it uses fixed setpoint and parameter
values, it uses a pipe as a source of data for initializing PID parameters, and it uses a
set of samples from the controlled systems for initializing the PID structures.

The following describes the initialization logic.

INITIALIZE PID PARAMETERS
  Fetch one block of samples from the input pipe.
  For each PID loop
    Allocate and initialize PID structure
  End for
  While PID coefficients remain in the parameter pipe
    Fetch a group of PID parameters from parameter pipe
    Apply PID parameters to the specified loop
  End while
End INITIALIZE PID PARAMETERS.

The BPID2 command obtains all configurable parameters from a single data pipe,
using normal Developer's Toolkit for DAPL pipe functions. Parameters for each PID
loop are read from the pipe together, as a unit. A special "tag" number precedes them,
identifying the PID loop to which the parameters apply. A composite data structure,
consisting of the special "tag" and the PIDCOEF data, is used to access the parameter
data directly from the input buffer.



Customizing PID Control 119

The BPID2 command does not use the parameter input pipe after initialization is
completed. Other commands which allow parameter changes would use the
pipe_numpipe_numpipe_numpipe_num function in the real-time loop at appropriate intervals to see whether new
parameter groups have appeared.

The following listing shows the completed C code for the BPID2 command.

/*
**  BPID2 (p1, p2, n, vdac)
**  Blocked-PID custom real-time control command
**    - reads control parameter data from 'p2'
**    - reads system output feedback from 'p1'
**    - controls 'n' PID loops
**    - sends control outputs to DACs specified by 'vdac'
*/

#include        "cdapcc.h"

#define  iMaxPIDLoops    64
#define  FOREVER      1
#define  OKAY         0

void   real_time_updates( PBUF * inpipe, VECTOR * outDACs,
          int size );

static PID   * PID_blocks [iMaxPIDLoops] ;

struct tagged_PIDCOEF  {
    int   tag;
    PIDCOEF  coeffs;
    };



120 Customizing PID Control

/*
** BPID2 command main routine.  Initialize structures for
**   input pipes and PID control.  Start the real-time loop.
*/
void  main ( PIB ** plib )
{
    void    ** parameters;        /* parameters from plib */
    PIPE    * in_pipe, * param_pipe;
    VECTOR  * DACs;
    int     blocksize;
    PBUF    * coef_buf, * in_buf;   /* other system data */
    int     * samples;
    int     channel;                /* PID control */
    struct  tagged_PIDCOEF  * coeff_set;
    PID     * current_PID;

    /* Strip parameters from the parameter structure  */
    parameters =  param_process(plib, &channel, 4, 4,
          T_PIPE_W, T_PIPE_W, T_CONST_W, T_VECTOR );
    in_pipe =    (PIPE *) parameters[1];
    param_pipe = (PIPE *) parameters[2];
    blocksize = * (int *) parameters[3];
    DACs = (VECTOR *) parameters[4];

    /* Check blocksize */
    if ( blocksize < 1  || blocksize > iMaxPIDLoops ||
         vector_length(DACs) != blocksize )
                param_error();



Customizing PID Control 121

    /* Prepare pipe for fetching feedback data input in
blocks. */
    pipe_open(in_pipe,P_READ);
    in_buf = pbuf_open(in_pipe,blocksize);
    pbuf_set_min_cnt(in_buf,pbuf_get_max_cnt(in_buf));

    /*
    ** Prepare PID parameter training pipe.  Access
parameter
    **  data directly from buffer storage.  Make buffer
allocation,
    **  cover exactly one tagged_PIDCOEFF structure.
    */
    pipe_open(param_pipe,P_READ);
    coef_buf = pbuf_open(param_pipe,
            sizeof(struct tagged_PIDCOEF)/2);
    pbuf_set_min_cnt(coef_buf,pbuf_get_max_cnt(coef_buf));
    coeff_set = (struct  tagged_PIDCOEF *)
        pbuf_get_data_ptr(coef_buf);

    /* Fetch one block of input samples for initialization.
*/
    pbuf_get(in_buf);
    samples = (int *) pbuf_get_data_ptr(in_buf);
    for (channel=0; channel<blocksize; ++channel)
    {
        current_PID = pid_open( samples[channel] );
        PID_blocks[channel] = current_PID;
    }

    /* Read all parameter data and apply to the PID loops.
*/
    while ( pipe_num(param_pipe) )
    {
        pbuf_get(coef_buf);
        channel = coeff_set->tag;
        if ( channel < 0  ||  channel >= blocksize )
continue;
        if ( pid_tune( PID_blocks[channel],
              &(coeff_set->coeffs) ) != OKAY )
            param_error();
    }



122 Customizing PID Control

    /* Perform real-time updates.  Does not return.  */
    real_time_updates( in_buf, DACs, blocksize );
}  /*  End of BPID2 main function  */

/*
** Real-time update loop for PID control.  The output sign
**  is not inverted, to keep it consistent with the DAPL
**  PID command.
*/
void   real_time_updates ( PBUF * in_buf, VECTOR * DACs,
           int blocksize)
{
    int  * samples;
    int const * outputs;
    int  channel;

    samples = (int *) pbuf_get_data_ptr(in_buf);
    outputs = vector_start(DACs);

    while (FOREVER)
    {
        pbuf_get(in_buf);
        for  (channel=0; channel<blocksize; ++channel)
        {
            dac_out ( outputs[channel] ,
                pid_update( PID_blocks[channel],
                     samples[channel] ) );
        }
    }  /* End real-time update loop */
} /* End of real-time update function */
            dac_out ( outputs[channel] ,
                pid_update( samples[channel],
                    PID_blocks[channel] ) );
        }
    }  /* End real-time update loop */
} /* End of real-time update function */



Multitasking Support 123

10. Multitasking Support

This chapter is an advanced topic which applies to control applications requiring the
fastest possible real-time processing and the smallest possible response latency. A
special Developer's Toolkit for DAPL function can halt DAPL multitasking and
dedicate all CPU resources to a single control task. When this is done, only essential
interrupt-driven DAPL services remain active. Very few control systems require this
extra margin of capability, but it is available for the systems that need it.

Changing multitasking operation is an option that should be used with the greatest
care. There are numerous hazards that occur when multitasking stops. DAPL services
that you would normally take for granted cease to function. Error checking and data
formatting services do not respond. Buffering of input samples is severely limited.
User pipes are of little use, because other tasks have no opportunity to read from
them. All functionality for the application must be custom-programmed and built into
a downloaded custom command.



124 Multitasking Support

Suspending and Resuming Multitasking

The sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function gives the custom command direct control of
DAPL multitasking operation. The parameter specifies the multitasking mode.

Calling the sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function with parameter eMultiOff turns task
switching off. Multitasking remains off until one of the following occurs:

• the task calls the sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function with parameter eMultiOn
• input channels overflow
• output channels underflow
• the task terminates

Some of the events that terminate a task include a call to exitexitexitexit, a parameter error in
param_processparam_processparam_processparam_process, or a call to param_errorparam_errorparam_errorparam_error.

Calling the sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function with parameter eMultiOffSYSIN
turns task switching off, and additionally allows multitasking to resume when the Data
Acquisition Processor receives any character from the PC interface through the
$SYSIN communication pipe.

The eMultiOff parameter is used for time-critical control processes that must not be
interrupted by DAPL commands before completion. After calling the
sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function with parameter eMultiOff to turn off
multitasking, commands sent to the DAPL command interpreter are received and
buffered, but not interpreted. Commands remain unprocessed in the communication
buffers, either on the Data Acquisition Processor or in the PC's ACCEL driver buffers,
until multitasking resumes. This means that sending a STOP or RESET command is not
sufficient to terminate operation of the real-time command while multitasking is off. If
multitasking is turned back on, the buffered commands are processed, and any error
messages generated during task termination are sent to the PC in the normal manner.
Control messages also can be sent directly to the custom command while multitasking
is off, avoiding the DAPL interpreter. One way to do this is to use the $BININ pipe as
an auxiliary input to the custom command. The custom command must occasionally
call pipe_numpipe_numpipe_numpipe_num o see if the PC has sent a message, and if so, read the message codes
and take the appropriate action. If $BININ is already used for other purposes, or if
text mode is required, a separate communications pipe can be defined in DAPL using
the CPIPE command.

The eMultiOffSYSIN parameter is used for control applications which need to be
easily started and stopped without resetting the sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function.



Multitasking Support 125

After calling the sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking function with parameter
eMultiOffSYSIN to turn off multitasking, sending a STOP or RESET command
enables multitasking and terminates operation of the real-time command.

Note: If the DAPL interpreter receives other commands, or portions of a command,
multitasking will be turned on. The real-time control task continues to run, but with
multitasking enabled. While multitasking is on, data backlog, response delays, or
input channel overflow can occur. Be particularly careful with PC applications that
send commands to the Data Acquisition Processor one character at a time.

Available Services with Multitasking Off

The following DAPL services remain available when multitasking is off:

• Reading from input channel pipes or communication pipes
• Writing to output channel pipes or communication pipes
• Writing to asynchronous output devices
• Interrupt-driven data sampling
• Interrupt-driven output updates
• Interrupt-driven PC data transfers
• Real-time clock services
• All Developer's Toolkit for DAPL system functions except the
sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command function

Be careful when using the input burst mode. When multitasking is off, the system
services which normally re-arm the burst mode hardware are not scheduled. The next
burst will not be initiated unless all data from a previous burst is removed from all
input channel pipes. This could introduce timing problems for burst events which
occur close together. To minimize this problem, when using input burst mode, use an
input channel list containing all of the input channel pipes. In the custom command,
read and store all data from the multiplexed input data first, to re-arm the burst mode,
and then analyze the data.



126 Multitasking Support

Input Procedure Buffering

Dynamic input channel buffering stops when multitasking is turned off. While
multitasking is active, DAPL continuously allocates as much onboard memory as it
needs to buffer input data samples. This is not the case when multitasking is off. It is
necessary to use the following special command in the input procedure:

BUFFERS STATIC

This command goes into effect when the input procedure containing it is started, and it
remains in effect until another input procedure is started. BUFFERS STATIC forces the
input procedure to use a small, fixed region of memory for data buffering. The active
task must read data from the input channel data buffers continuously, so that the input
channel pipe buffer storage is not exhausted.

The input channel buffer area is large enough to store the data captured in 100
milliseconds of continuous input procedure operation. The real-time custom command
must read all available data from the input channel pipe at least once every 100
milliseconds. The data can be read and processed an item at a time, or it can be read
as a block. The routine pbuf_getpbuf_getpbuf_getpbuf_get can safely capture long data blocks, even blocks
which require sampling for more than 100 milliseconds, because input channel pipe
data is copied from the input channel into a pipe buffer. Processing of a long data
block must be completed within 100 milliseconds, however, so that pbuf_getpbuf_getpbuf_getpbuf_get can be
called again to begin copying the next block.



Multitasking Support 127

Application Examples

The RTALARM custom command reads from an input pipe. If the values of three
consecutive samples exceed a pre-defined control limit, an alarm is raised and latched
by setting a bit on the digital output port. Multitasking is turned off to minimize the
response latency.

/*
** RTALARM (p1)
**   Fast real-time alarm for data values over the control
limit.
**   Read data from input channel pipe 'p1'.
**   Three consecutive readings must be over the limit for
alarm.
**   Alarm latches bit 8 of the digital output port.
*/

#include <cdapcc.h>
void main (PIB **plib);
void rtalarm (PIPE *input_channel_pipe);

#define   OUTPUT_BIT     8
#define   CONTROL_LIMIT  10000
#define   DEBOUNCE       3



128 Multitasking Support

/*  Real-time processing routine.  */
void rtalarm (PIPE *in_pipe)
{
    int val;
    int  consec = 0;

    /* Multitasking is off for max speed! */
    sys_set_multitasking(eMultiOff);

    while (1)
    {
        val = (int) pipe_get (in_pipe);
        if  ( val > CONTROL_LIMIT )
        {
            ++consec;
            if (consec >= DEBOUNCE)
digital_set_bit(OUTPUT_BIT,1);
        }
        else  consec = 0;
    }
}

The following DAPL commands route input samples to the RTALARM custom
command at 50 microsecond intervals.

#reset
#idef a 1
  >set ipipe0 s0
  >time 50.0
  >buffers static
  >end
#pdef b
  >rtalarm(ipipe0);
  >end
#start a,b

After the DAPL interpreter performs the START command, the RTALARM command
initializes, turns off multitasking, and begins continuous operation. The eMultiOff
parameter rather than the eMultiOffSYSIN is used because this command is
intended for continuous duty. The DAPL interpreter appears to "hang" at this point,
not responding to new commands. The DAPLINIT program used with the /RESET
option will reinitialize DAPL operation.

The second example is a PID controller application. The requirements for this
command are the same as those for the BPID2 application described in Chapter 9,



Multitasking Support 129

except that this command does not run concurrently with other tasks. Multitasking is
turned off to reduce the CPU overhead, maximizing the number of high-speed
channels that can be controlled simultaneously, and improving response latency.

This application satisfies all of the constraints for operating with multitasking off.
Data is obtained from an input channel using buffered pipe operations, the outputs are
asynchronous, the amount of data to be processed is small, and operation is
continuous.

The main routine is identical to the main BPID2 program listing shown in Chapter 9
and is not repeated here. The following partial listing shows the modified real-time
update routine.

/*
**  RTBPID (p1, p2, n, vdac)
**    - reads control parameter data from 'p2'
**    - reads system output feedback from 'p1'
**    - controls 'n' PID loops
**    - sends control outputs to DACs specified by 'vdac'
**    - runs with multitasking OFF
*/
void   real_time_updates ( PBUF * in_buf, VECTOR * DACs,
           int blocksize)
{
    int  * samples;
    int const * outputs;
    int  channel;

    samples = (int *) pbuf_get_data_ptr(in_buf);
    outputs = vector_start(DACs);

    /* Multitasking is OFF for max speed! */
    sys_set_multitasking(eMultiOff);

    while (FOREVER)
    {
        pbuf_get(in_buf);
        for  (channel=0; channel<blocksize; ++channel)
        {
            dac_out ( outputs[channel] ,
                pid_update( PID_blocks[channel],
                     samples[channel] ) );
        }
    }  /* End real-time update loop */
} /* End of real-time update function */



130 Multitasking Support

Interrupts and Latency

When multitasking is turned off, the worst-case response latency depends only on the
custom command processing time and interrupt processing time.

The following interrupts can occur when multitasking is off:

• Host Input Interrupt — occurs for each data block transferred from the ACCEL
driver on the PC to a communication pipe on the Data Acquisition Processor.

• Host Output Interrupt — occurs for each data block transferred from a
communications pipe on the Data Acquisition Processor to the ACCEL driver on
the PC.

• Synchronous Input Interrupt — occurs periodically when DAPL updates internal
data buffers after capturing a number of input samples.

• Synchronous Output Interrupt — occurs periodically when DAPL updates internal
data buffers after completing output updates for a block of synchronous output
data.

• RTC Interrupt — occurs periodically when DAPL updates the status of the
internal real-time clock.

• DSP Interrupt — occurs each time the DSP coprocessor completes a DSP
operation.

• SIO Interrupt — occurs during data transfers on the serial port, each time a
received character becomes available and each time a transmitted character is sent.

Current information about interrupt response times is provided in the file
INTTIME.TXT, which is provided on the Developer's Toolkit for DAPL diskette.

To calculate response latency for a specific application, determine the maximum
number of interrupts of all kinds that could occur between the time a data sample
arrives and the time the corresponding output is generated by the custom command.
Combine the time required for interrupt processing and the time required for
execution of the custom command code to obtain the estimate for worst-case response
latency.



Programming Suggestions 131

11. Programming Suggestions

This chapter provides some coding guidelines for writing C custom commands.

Task Parameters

A custom command usually requires one or more DAPL parameters. DAPL
parameters serve the following functions:

• DAPL parameters provide information unique to each task. Since several instances
of a command can be executing at once and since each task normally performs a
unique computation, each task must operate on different data. A DAPL parameter
list provides a means of specifying different data for different tasks.

• DAPL parameters provide a means to assign a distinct identity to each task.
• DAPL parameters provide tasks with access to DAPL data structures. When a

DAPL symbol appears in a custom task’s parameter list, the task receives a handle
to the data structure named by the DAPL symbol. This allows the task to reference
the DAPL data structure. DAPL symbols specified in a task's parameter list are the
only DAPL symbols that can be referenced by a task.

The following example illustrates these uses of task parameters. The CTEST custom
command is coded to accept two parameters, a constant and a pipe. Note that the
actual value of each parameter is not known at the time the custom command is
compiled:

void main (PIB **plib)
{
void **argv;
int argc;
int c1;
PIPE *p;
argv = param_process (plib, &argc, 2, 2, T_CONST_W,
T_PIPE_W);
c1 = *(const int *) argv[1];
p = (PIPE *) argv[2];
  .
  .



132 Programming Suggestions

The custom command is compiled and downloaded to the Data Acquisition Processor.
The values of the parameters are not fixed until a task definition command is entered:

PDEF A
  CTEST (1, P1)
  CTEST (3, P25)
END

This processing procedure defines two tasks. When execution of the tasks begins, the
first task is executed with the value of C variable c1 equal to 1 and the C pointer p
pointing to the DAPL pipe P1. The second task is executed with the value of C
variable c1 equal to 3 and the C pointer p pointing to the DAPL pipe structure P25.
The two CTEST task definitions provide different data to the two CTEST tasks.

DAPL Names and C Names

There is an important difference between names defined in DAPL and names defined
in C. For example:

int *VAR1;

defines a pointer, named VAR1, which points to a word of storage in the C command
environment. The DAPL command:

VARIABLE VAR1=4

defines a DAPL variable named VAR1 , which references a word of storage in the
DAPL system environment. Although the C code uses the same symbol name as the
DAPL command, the C pointer does not automatically point to the DAPL variable
VAR1. In order to reference DAPL variable VAR1, the DAPL variable must be passed
as a parameter to the C custom command, and the C custom command must use the
parameter handle to initialize the VAR1 pointer:

VAR1 = (VAR *) argv[1];

After this statement is executed, dereferencing VAR1 in the task’s C environment
accesses the contents of the VAR1 variable defined in the DAPL system environment.
The following C statements change the value of the DAPL variable VAR1 from 4 to 7:

var1 = (VAR *) argv[1];
*var1 = 7;



Programming Suggestions 133

Naming Task Parameters

The function param_processparam_processparam_processparam_process returns an array of parameter pointers. Custom
commands are more understandable if each element of the parameter array is assigned
a symbolic name. This is usually done in one of the following ways:

• Each element in the parameter array is assigned to an explicitly-named automatic
variable of the appropriate type. If the value is not subject to change, the pointer
can be dereferenced immediately and only the value retained.  If the value is
subject to change, the pointer can be saved and dereferenced at a later time.

• An auxiliary function can be called. Each element in the parameter array is passed
to the auxiliary function. The formal parameters of the auxiliary function are given
mnemonic names.

• If many functions in the C code must reference a task's parameters, it may be more
efficient to assign parameter pointers or values to static variables to avoid the
overhead of function calls with many parameters.

The following example uses an auxiliary function and a static variable for managing
the two parameters of  the CTEST command:

static void  ctest_aux (PIPE *p);
static int  taskid;
void main (PIB **plib)
{

void **argv;
int argc;
PIPE *p;
argv = param_process (plib, &argc, 2, 2, T_CONST_W,
T_PIPE_W);
taskid = *(CONSTANT *) argv[1];
ctest_aux ((PIPE *) argv[2]);

}
static void ctest_aux (PIPE *p)
{

.

.

.
}

Note the use of the CONSTANT type name rather than int while accessing the value
stored in the DAPL environment. The CONSTANT data type includes a const keyword
to protect the first argument of the task from accidental modification. Accidentally
changing the value of a task parameter that is a constant can cause a system failure.



134 Programming Suggestions

Debugging Custom Commands

The environment in which custom commands are executed is considerably more
demanding than the environment of a typical PC application. The DAPL operating
system is multitasking, with many tasks executing simultaneously. In many cases
several copies of the same custom command are executed simultaneously.
Furthermore, execution of a custom command often is subject to timing constraints; a
custom command must process data efficiently and respond rapidly to random
external events.

Traditional symbolic debugging tools such as Microsoft CodeView are not well suited
to debugging custom commands. DAPL multitasking code executes hundreds of
different code fragments every second; this activity is very difficult to trace with a
debugger. A debugger also tends to slow down execution; and this has undesirable
effects in a real time operating system and can introduce spurious timing errors.

Custom commands should be written with care. When coding errors do occur, these
are best found by carefully examining custom command program logic.

System routines are not able to check their input parameter pointers for validity, so
incorrect use of pointers is a common cause of custom command errors. When an
incorrectly initialized pointer is passed to a DAPL system routine, the system routine
may corrupt memory by modifying data referenced by the illegal pointer. For
example, if an illegal pipe pointer is passed to the function pipe_putpipe_putpipe_putpipe_put, the DAPL
firmware may overwrite an internal system data structure. Later this could cause a
failure that seems unrelated to the custom command.

During custom command debugging, it often is useful to send intermediate results
directly to the PC using the function printfprintfprintfprintf. When running a custom command from
DAPview, the intermediate data values are displayed immediately on the PC's screen.
Some custom commands need to respond too rapidly to allow execution of a printfprintfprintfprintf
function. In these cases, useful information about the status of a custom command can
be sent to the 16-bit digital output port of the Data Acquisition Processor, using the
digital_outdigital_outdigital_outdigital_out routine. Alternatively, a custom command can send debugging
information to an auxiliary output pipe; this information could be formatted by a
separate task such as a DAPL FORMAT task.



Programming Suggestions 135

Optimizing Custom Commands

The Data Acquisition Processor constantly gathers statistics about how much CPU
time various tasks use. This information is available to assist the C programmer in
determining whether custom tasks are using CPU resources efficiently.

The DAPL command TASKSTAT has two forms, TASKSTAT CLEAR and TASKSTAT
STATUS. TASKSTAT CLEAR resets all the CPU time use statistics to zero. To get
useful information about an application, this command should be issued after an
application is running. TASKSTAT STATUS prints statistics about the amount of CPU
time used by each task, from the time of the last TASKSTAT CLEAR command.

Typical output from the TASKSTAT command is:

Task CPU Time Used (in ms)
*DAPL* 394
OVR_CHK 0
UND_CHK 0
MEM_TSK 407
ALARM 2413
PID 3645

system idle/overhead 4869

Average task cycle latency (in us): 210

The first four tasks are system tasks that always are defined. All remaining tasks are
defined in active processing procedures.

Note that pipe_getpipe_getpipe_getpipe_get, pbuf_getpbuf_getpbuf_getpbuf_get, task_pausetask_pausetask_pausetask_pause, and trigger_waittrigger_waittrigger_waittrigger_wait are the common
system routines that automatically release the CPU. If a C custom command seems to
be using a disproportionately large amount of CPU time, check the C code to verify
that the task releases the CPU when necessary. A custom task that waits for the value
of a variable to change or which polls the status of a pipe or trigger using pipe_numpipe_numpipe_numpipe_num
or trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate should include explicit calls to task_switchtask_switchtask_switchtask_switch.



136 Programming Suggestions

Using Assembly Language in Custom Commands

If a task defined by a custom command must be executed very rapidly, portions of the
custom command can be coded in assembly language. There are two methods of
including assembly language into a custom command. Version 6 and above of the
Microsoft C compiler and version 3.5 and above of the Borland C compiler allow
assembly code to be embedded directly into C code, using the _asm directive. These
compilers also allow the main body of a C custom command to call an assembly
language routine coded for the Compact Memory Model. See your compiler manuals
for information about mixed language programming.

Note: Assembly language custom command programming is recommended only for
advanced programmers. The following guidelines must be followed when writing
assembly language routines for custom commands.

• The segment registers SS and DS point to system data areas and must never be
changed.

• The FS and GS registers must never be altered for any reason, because these are
dedicated to system tasking and hardware access.

• If the string-operation direction flag is set, this flag should be cleared before
leaving the assembly language routine.

• Assembly code must be relocatable.  It can access the custom command data
segment via DGROUP, but it is safer to make the function reentrant, passing all
parameters, and using no references to fixed storage locations.

• Assembly code must not generate software interrupts or access BIOS data areas,
since a custom command does not run under DOS.

• A CLI instruction does not guarantee that interrupts will be masked, since some
Data Acquisition Processors use the nonmaskable interrupt (NMI). Interrupts can
be masked and unmasked with the functions sys_mask_interrupts and
sys_unmask_interrupts. Masking interrupts is extremely dangerous.
Interrupts must not remain masked for more than a few CPU clock cycles or
operating system failures will occur. If you think that your application requires
interrupt masking, contact Microstar Laboratories for information specific to your
software and hardware configuration.



Compiling Custom Commands 137

12. Compiling Custom Commands

This chapter provides information about how to compile custom commands. Most of
the detail about the organization of the Developer's Toolkit for DAPL library files and
the MS-DOS batch files is of interest only to advanced programmers who have special
need for customizing their development process.

An Overview: Compiling and Running Custom Commands

After a custom command is written in C according to the instructions provided in this
document, the C code must be compiled and downloaded to the Data Acquisition
Processor. Let the base name for command’s C source code file be the name that will
be used in the DAPL file to identify the command. For example, the file COPY2.C
provided on the Developer's Toolkit for DAPL diskette will generate a custom
command with name COPY2.

Select the appropriate batch file from the Developer's Toolkit for DAPL directory.
The choice will depend on the compiler to be used, and the operating system for
which the custom command is intended. Use BCC4.BAT for Borland compilers or
MCC4.BAT for Microsoft compilers when the custom command is intended to run
under DAPL version 4. Use BCC16.BAT for Borland compilers or MCC16.BAT for
Microsoft compilers when the custom command is intended to run under DAPL 2000.
Make sure that the computer configuration information at the top of the batch file is
correct for the computer system on which the Developer's Toolkit for DAPL is
installed.

Change the current directory to the directory containing the source file. Then, run the
batch file from the DOS command line. Possible error messages are listed in Chapter
15. Depending on the configuration information in the batch file, the COMLOAD
utility will automatically download the custom command binary code to the Data
Acquisition Processor. The COMLOAD utility, DAPview, or a customized PC
application may also be used to download the custom command binary code as a
separate operation; see Chapter 13.



138 Compiling Custom Commands

The following dialog is typical of the compilation and downloading process:

C>MCC4 COPY2  FP
C>DV
Control / Download / One / Command
Custom command file: COPY2
Stack size: 1000
Transfer completed

Notice that the stack size requirement of the custom command must be specified. If
the stack specified for a custom task is too small, the task may terminate with an error
message. The default stack size of one thousand bytes is sufficient for most custom
commands. If a custom command uses many automatic variables or nested function
calls, the stack size must be increased. See the compiler manuals for an explanation of
the number of bytes required by various C data types. The compiler manuals do not
have information about the stack memory required in the DAPL environment, so some
experimentation may be necessary. In most cases, allowing 600 bytes for DAPL
system and 100 bytes for printfprintfprintfprintf formatting.

Batch Files

The Developer's Toolkit for DAPL provides batch files for compiling and linking
custom commands. The files BCC4.BAT and BCC16.BAT are compatible with the
Borland 3.1, 4.0 and 4.5 C/C++ compilers. The files MCC4.BAT and MCC16.BAT are
compatible with the Microsoft C version 5.1 and 6.0 compilers and the C/C++ version
7.0 and 8.0 (Visual C 1.0 or 1.5 Professional Edition) compilers.

The batch files require that the PC development system is configured for running the
compiler and linker. In particular, the PATH must be established so that the compiler
and linker can be executed. The compiler may also require that some DOS
environment variables be established using the SET command. The compiler
installation will usually alter the development system’s AUTOEXEC.BAT file to take
care of the environment and path. If this was not done, the compiler environment must
be explicitly set up before compiling a custom command. One option is to edit a copy
of the batch file to include the extra system configuration information.

The BCC4.BAT, BCC16.BAT, MCC4.BAT, and MCC16.BAT files also require
information about where the Developer's Toolkit for DAPL files and utilities are
located. Find the “configuration section” near the top of these files. Edit the lines that
indicate the execution path for Developer's Toolkit for DAPL if the installation
directory is not C:\DTDC. It is also helpful to have the Developer's Toolkit for DAPL
directory on the execution path.



Compiling Custom Commands 139

The batch file default configuration will automatically download the compiled custom
command to a Data Acquisition Processor. This will not be useful if the development
system used to compile the custom command is not the same as the one where the
Data Acquisition Processor is installed, or if more than one Data Acquisition
Processor is present. For these situations, set the option AUTO=FALSE in the
configuration section of the batch file.

There are additional parameters that you must specify depending on your compiler
type. For a Microsoft compiler, specify the optimization options, which are different
for each compiler version. More details about compiler options are provided in the
next section of this chapter. For a Borland compiler, specify the BLIB parameter,
which tells the TLINK program where to find the Borland run-time libraries.

After the compiler and the batch file are configured, a custom command file can be
compiled from any directory. First, make the directory containing the C code for the
command the current directory. Then, execute the appropriate batch file, BCC4.BAT,
BCC16.BAT, MCC4.BAT or MCC16.BAT. If the batch file is not on the execution path,
the fully qualified path to the batch file must be specified on the command line.

Three additional parameters may be specified on the command line after the batch file
name. The first is the name of the custom command file, less the “.C” file extension.
The next parameter specifies the library type to use. Use all capitals: SMALL or FP.
To use the default stack size and the default SMALL library, omit this parameter and
leave the rest of the command line blank. For custom commands with special stack
usage requirements, the library type must be specified, and after that, the stack
requirement in bytes is specified. A minimum stack size of 700 is recommended, or
1,000 for any custom command that uses printfprintfprintfprintf and its variants for text formatting.

The Developer's Toolkit for DAPL installation establishes the SMALL and FP
subdirectories to the Developer's Toolkit for DAPL directory. The BCC4.BAT,
BCC16.BAT, MCC4.BAT and MCC16.BAT batch files expect this structure. It is
strongly recommended that you do not alter this arrangement.

The batch file executes four steps for compiling and converting a custom command
file:

• Compile the custom command source code
• Link the startup code, interface code, and custom command code
• Convert the relocatable DOS application file to a binary image
• Download the binary image

The compile step is identical to a compile-only operation for a PC application written
in C.



140 Compiling Custom Commands

The link step is similar to the link step for an ordinary DOS application, except that
special code must be included for the custom command to run in the Data Acquisition
Processor environment. The object file CSTART4.OBJ or CSTART16.OBJ contains
startup code which prepares a task to begin execution and establishes the C
environment expected by the compiler’s code. For the FP library, an additional object
module is included after the startup code, providing interfaces to the
floating point function library and other floating point services. Following the object
module is the compiled custom command object file. The custom command may make
references to any number of DAPL services through Developer's Toolkit for DAPL
functions, and these references are satisfied by the Developer's Toolkit for DAPL
library file DTDC4.LIB or DTDC16.LIB. Finally, any function references not yet
resolved are satisfied by accessing the function library provided for the compiler.

Custom commands that do not use floating point features may be compiled using any
library type. For the smallest and most efficient code, the SMALL library should be
used. If floating point is required, or to stay with one compile option that always
works, use the FP library. Custom commands use an inline 8087 code option at
compile time.

The Microsoft compilers require user configuration of the compiler runtime libraries.
Use the compiler’s configuration program to establish the combined library
CLIBC7.LIB which supports:

• the Compact memory model
• native 8087 instruction set (no emulation).

The following compiler options are used for Microsoft compilers:

/AC /Aw
• specify the compact memory model with separate stack and data segments. Do not

change these. The code pointers are small, data pointers are far, the value of the DS
register is fixed, and the SS register is not equal to the DS register.

/c
• Separate compilation, required so that startup and interface code can be introduced

during the link process.

/I
• Enables inclusion of header files at compile time.



Compiling Custom Commands 141

/G1
• Specifies 16-bit code generation for 80x186 series processors; the resulting code is

more efficient and more compact than 8086/8088 code, and compatible with 16-bit
code running under 80x486 protected mode.

/FPi87
• Specifies the type of floating library support. As discussed above, the /FPi87

option is used.

/Ze
• Enables language extensions.

/W3
• Specifies maximum level of diagnostics. This option sometimes produces

numerous warning messages, even for code which is perfectly compliant with the
C standard. In such cases, W2 or W1 might be preferred.

/O
• The compiler optimizations are different depending on the compiler version. In

general, less aggressive optimizations are acceptable, but optimizations more
aggressive than the ones recommended below may produce code which is not
compatible with the Data Acquisition Processor environment, and could lead to
unpredictable software failures. The /Oi (generate intrinsics) option is not
supported. The following optimizations are recommended.

/Olt C version 5
/Owelt C version 6
/Owgelt C/C++ version 7 and Visual C 8.0

The following compiler options are used for Borland compilers:

-c
• Separate compilation, required so that startup and interface code can be introduced

during the link process.

-mc
• This specifies the compact memory model with separate stack and data segments.

Do not change these. The code pointers are small, data pointers are far, the value
of the DS register is fixed, and the SS register is not equal to the DS register.

-I
• Enables inclusion of the file with command source at compile time.



142 Compiling Custom Commands

-f87 or -f-
• Specifies the type of floating library support. 8087 native instructions are used for

the FP library, no floating point support for the SMALL library.

Code Conversion

The conversion command is:

EXEPROC %1 /c

The EXEPROC program is provided in the Developer's Toolkit for DAPL. This
program relocates the executable file generated by the linker, producing a binary code
image.

EXEPROC creates a file with a .BIN suffix which can be downloaded to a Data
Acquisition Processor. EXEPROC is similar in function to the DOS EXE2BIN
command, but intended for the DAPL environment rather than the DOS environment.
EXEPROC will work both with DAPL version 4 and DAPL 2000.

Be sure to download the custom command binary code to the system for which it was
compiled. A custom command compiled for DAPL version 4 will not run on
DAPL 2000, and a custom command compiled for DAPL 2000 will not run under
DAPL version 4.

C Restrictions

Not all compiler runtime library functions are compatible with the Data Acquisition
Processor environment. Incompatible functions generally require DOS services, such
as file or screen input/output. If a custom command attempts to use incompatible
functions, error messages will be displayed during linking or converting. See Chapter
14 for information about compatible library functions.

In some instances, the compiler does not generate code that can be relocated to a
binary image by the EXEPROC program.

C variables defined globally within the compile module must be preceded by the
static keyword.

Custom command must not define a static variable that is initialized to the address of
another static data structure, for example:

static *s = "abcd";



Compiling Custom Commands 143

The above example generates a conversion error. In most cases, the static definition
can be modified to avoid this restriction. The following code is converted without
error:

static s[] = "abcd";

Different compilers have different ways of doing things. Compilers often generate
very different code under different optimization options. Different maintenance
releases of the same compiler may produce different code under any option. If custom
command code conforms to the restrictions given in this chapter, and the code
compiles cleanly but still has problems with linking or binary conversion, please call
immediately for technical support.





PC Support 145

13. PC Support

Custom commands can be sent from the PC to the Data Acquisition Processor using
DAPview or COMLOAD. These programs are described in the Data Acquisition
Processor manuals. Programs running in the PC also may download custom
commands by reading the binary code of the commands and sending the commands to
the Data Acquisition Processor. Microstar Laboratories provides Pascal and C library
routines that perform this operation.

All filenames in this chapter refer to files on the Microstar Laboratories Data
Acquisition Processor diskettes rather than the Developer's Toolkit for DAPL
diskettes.



146 PC Support

Downloading from C

The following routines are used for downloading custom commands to the Data
Acquisition Processor. These functions are declared in the file CDLOAD.H.

int DownloadCmd ( int DapTextIO, int DapBinIO, char
*CCFilename, unsigned int
CCStackSize, unsigned int
*CCLength, int BinaryFlag)

DownloadCmd downloads a custom command to the Data Acquisition Processor using
device input/output. The parameter DapTextIO contains a DOS file handle for a text
ACCEL device, and DapBinIO contains a DOS file handle for a binary ACCEL
device. The parameter DapBinIO is not used if text downloading is selected. Both
ACCEL devices should be numbered ACCEL devices. The parameter CCFilename
contains the name of the DOS custom command file to be downloaded. The DAPL
command is given the same name, minus any directory path or filename suffix. The
stack size of the command must be specified as the CCStackSize parameter. The
binary downloading mode should be used, except for downloading to a Data
Acquisition Processor in stand-alone mode using the serial port. To specify the binary
mode, set the BinaryFlag parameter to a nonzero value, otherwise, text mode is
used.

After DownloadCmd returns, CCLength contains the number of bytes of code that
were transferred. The function also returns an integer error flag:

 0 no errors
 1 file could not be opened
 2 file read error
 3 code transfer failed
-1 ACCEL driver not installed
-2 Data Acquisition Processor hardware not responding

int fDownloadCmd ( FILE *DapTextIn, FILE *DapTextOut, FILE
*DapBinOut, char *CCFilename,
unsigned int CCStackSize, unsigned
int *CCLength, int BinaryFlag)

fDownloadCmd downloads a custom command to the Data Acquisition Processor
using stream input/output. The parameter DapTextIn contains a C input stream
pointer to a text ACCEL device, DapTextOut contains a C output stream pointer to a
text ACCEL device, and DapBinOut contains a C output stream pointer to a binary



PC Support 147

ACCEL device. The parameter DapBinOut is not used if text downloading is
selected. All other parameters and return values are the same as those for
DownloadCmd.

int DownloadList ( int DapTextIO, int DapBinIO, char
*CCListFilename, int PrintFlag, int
BinaryFlag)

DownloadList downloads a list of custom commands to the Data Acquisition
Processor using device input/output. The parameter CCListFilename contains the
name of the DOS file that contains the list of custom command information. See the
DAPview documentation in the Data Acquisition Processor manuals for a complete
description of this file's format. If the PrintFlag parameter is nonzero,
DownloadList prints a message after successfully downloading each file. All other
parameters and return values are the same as those for DownloadCmd.

int fDownloadList ( FILE *DapTextIn, FILE *DapTextOut, FILE
*DapBinOut, char *CCListFilename,
int PrintFlag, int BinaryFlag)

fDownloadList downloads a list of custom commands to the Data Acquisition
Processor using stream input/output. The parameter DapTextIn contains a C input
stream pointer to a text ACCEL device, DapTextOut contains a C output stream
pointer to a text ACCEL device, and DapBinOut contains a C output stream pointer
to a binary ACCEL device. The parameter DapBinOut is not used if text downloading
is selected. All other parameters and return values are the same as those for
DownloadList.

A C program that uses routines in CDLOAD must include the Microstar Laboratories C
library when linking. See the Data Acquisition Processor manuals for more
information about using Microstar Laboratories library routines from C.

The example program DOWNLOAD.C is a PC application which demonstrates binary
downloading of the custom command file RAVE.BIN. The source file RAVE.C must be
compiled into custom command format RAVE.BIN before the DOWNLOAD application
can be run. The DOWNLOAD application first downloads the RAVE custom command,
and then executes it using the DAPL file RAVE.DAP. The RAVE custom command
calculates a running average. The DOWNLOAD program then displays the data values
returned from the custom command.



148 PC Support

Downloading from Borland Pascal

The following routines are used for downloading custom commands to the Data
Acquisition Processor. These functions are in the file CDLOAD.PAS.

DownloadCmd ( DapTextIO: DosHandle; DapBinIO: DosHandle;
CCFilename: Filepath; CCStackSize:
Integer; var CCLength: Integer;
BinaryFlag: boolean):Integer

DownloadCmd downloads a custom command to the Data Acquisition Processor. The
parameter DapTextIO contains a DOS file handle for a text ACCEL device, and
DapBinIO contains a DOS file handle for a binary ACCEL device. The parameter
DapBinIO is not used if text downloading is selected. The parameter CCFilename
contains the name of the DOS custom command file to be downloaded. The DAPL
command is given the same name, minus any directory path or filename suffix. The
stack size of the command must be specified as the CCStackSize parameter. The
binary downloading mode should be used, except for downloading to a Data
Acquisition Processor in stand-alone mode using the serial port. To specify the binary
mode, set the BinaryFlag parameter to a nonzero value, otherwise, text mode is
used.

After DownloadCmd returns, CCLength contains the number of bytes of code that
were transferred. The function also returns an integer error indicator:

 0 no errors
 1 file could not be opened
 2 file read error
 3 code transfer failed
-1 ACCEL driver not installed
-2 Data Acquisition Processor hardware not responding

DownloadList ( DapTextIO: DosHandle; DapBinIO: DosHandle;
CCListFilename: Filepath;
PrintFlag: boolean; BinaryFlag:
boolean):Integer

DownloadList downloads a list of custom commands to the Data Acquisition
Processor. The parameter CCListFilename contains the name of the DOS file that
contains the list of custom command information. See the DAPview documentation in



PC Support 149

the Data Acquisition Processor manuals for a complete description of this file's
format. If the PrintFlag parameter is true, DownloadList prints a message after
successfully downloading each file. All other parameters and return values are the
same as those for DownloadCmd.

A Pascal program that uses these routines must include the CDLOAD unit. See the Data
Acquisition Processor manuals for more information about compiling Data
Acquisition Processor applications using Borland Turbo Pascal.

The example program DOWNLOAD.PAS is a PC application that demonstrates binary
downloading of the custom command file RAVE.BIN. The source file RAVE.C must be
compiled into custom command format RAVE.BIN before the DOWNLOAD application
can be run. The DOWNLOAD application first downloads the RAVE custom command,
and then executes it using the DAPL file RAVE.DAP. The RAVE custom command
calculates a running average. The DOWNLOAD program then displays the data values
returned from the custom command.





Data Acquisition Runtime Library 151

14. Data Acquisition Runtime Library

This chapter describes the system routines provided by the Developer's Toolkit for
DAPL. Many additional library routines are available in the Microsoft and Borland C
compiler runtime libraries.

The following list summarizes all Developer's Toolkit for DAPL system routines.
Some routines are available only in specific versions of DAPL. When this is true, the
description of the routine will contain a section titled “Restrictions” that describes any
DAPL version restrictions.

Pipe Operations

pipe_getpipe_getpipe_getpipe_get get a value from a pipe
pipe_get_floatpipe_get_floatpipe_get_floatpipe_get_float get a floating point value from a pipe
pipe_numpipe_numpipe_numpipe_num determine whether a pipe contains data
pipe_num_completepipe_num_completepipe_num_completepipe_num_complete return the number of data in a pipe
pipe_openpipe_openpipe_openpipe_open open a pipe
pipe_purgepipe_purgepipe_purgepipe_purge remove all data from a pipe
pipe_putpipe_putpipe_putpipe_put put a value into a pipe
pipe_put_floatpipe_put_floatpipe_put_floatpipe_put_float put a floating point value into a pipe
pipe_rempipe_rempipe_rempipe_rem remove a fixed number of data values from a pipe
pipe_widthpipe_widthpipe_widthpipe_width return the width of a pipe

Pipe Buffer (PBUF) Operations

pbuf_getpbuf_getpbuf_getpbuf_get get a block of data from a pipe
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt determine the current pipe buffer count
pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr get a pointer to the data array of a pipe buffer
pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt determine the maximum pipe buffer count
pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt determine the minimum pipe buffer count
pbuf_openpbuf_openpbuf_openpbuf_open open a pipe buffer
pbuf_putpbuf_putpbuf_putpbuf_put put a block of data into a pipe
pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt set the current pipe buffer count
pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr alter a pipe buffer storage pointer
pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt set the maximum pipe buffer count
pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt set the minimum pipe buffer count



152 Data Acquisition Runtime Library

Data Access

memcpymemcpymemcpymemcpy copy one memory region to another memory region
param_errorparam_errorparam_errorparam_error generate error message and terminate task
param_error_msgparam_error_msgparam_error_msgparam_error_msg generate task error message and terminate task
param_processparam_processparam_processparam_process locate task parameters and check types
param_typeparam_typeparam_typeparam_type test a task parameter type
var32_getvar32_getvar32_getvar32_get obtain the value of a long DAPL variable
var32_setvar32_setvar32_setvar32_set assign a value to a long DAPL variable
rallocrallocrallocralloc dynamically allocate bulk storage

Vectors

vector_lengthvector_lengthvector_lengthvector_length determine the length of a DAPL vector
vector_startvector_startvector_startvector_start obtain a pointer to DAPL vector data
vector_typevector_typevector_typevector_type return the type of data contained by the DAPL vector
vector_widthvector_widthvector_widthvector_width return the size of one data element in the DAPL vector

Task Control

exitexitexitexit terminate a task
sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking turn multitasking on or off
task_pausetask_pausetask_pausetask_pause pause for a specified time
task_switchtask_switchtask_switchtask_switch release the CPU

Text Formatting

atofatofatofatof convert an ASCII string to a float
printfprintfprintfprintf format and print a string
fprintffprintffprintffprintf format and print a string
sprintfsprintfsprintfsprintf format a string
fsendfsendfsendfsend print a string
sendsendsendsend print a string
sscanfsscanfsscanfsscanf parse a string

Asynchronous Device Output

dac_outdac_outdac_outdac_out send a value to a digital-to-analog converter
digital_outdigital_outdigital_outdigital_out send a value to a digital output port
digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit set a single bit of a digital output port
digital_toggle_bitdigital_toggle_bitdigital_toggle_bitdigital_toggle_bit toggle the state of a single bit of a digital output port



Data Acquisition Runtime Library 153

Triggers

trigger_gettrigger_gettrigger_gettrigger_get return next available trigger assertion
trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate return assertion or status immediately
trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode return a trigger's operating mode
trigger_get_propertytrigger_get_propertytrigger_get_propertytrigger_get_property return a trigger's property value
trigger_get_statustrigger_get_statustrigger_get_statustrigger_get_status return a trigger's current status count
trigger_numtrigger_numtrigger_numtrigger_num determine if an assertion is present
trigger_opentrigger_opentrigger_opentrigger_open initialize a trigger
trigger_puttrigger_puttrigger_puttrigger_put place an assertion into a trigger
trigger_set_statustrigger_set_statustrigger_set_statustrigger_set_status set a trigger’s status field
trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put increment a trigger’s status then assert
trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status increment a trigger’s status field
trigger_waittrigger_waittrigger_waittrigger_wait wait for a trigger assertion

FFT

fft_chngbuffft_chngbuffft_chngbuffft_chngbuf modify FFT data pointers
fft_initfft_initfft_initfft_init define an FFT
fft_postopfft_postopfft_postopfft_postop apply post-processing to FFT result
fft_receivefft_receivefft_receivefft_receive synchronize access to FFT result
fft_requestfft_requestfft_requestfft_request initiate FFT processing
fft_statusfft_statusfft_statusfft_status test for FFT completion

Digital Filters

fir_advancefir_advancefir_advancefir_advance bypass selected FIR filter computations
fir_changefir_changefir_changefir_change modify FIR characteristics
fir_initfir_initfir_initfir_init define a FIR filter
fir_receivefir_receivefir_receivefir_receive synchronize access to FIR result
fir_requestfir_requestfir_requestfir_request initiate FIR filter processing
fir_statusfir_statusfir_statusfir_status test for FIR completion

PID Feedback Control

pid_openpid_openpid_openpid_open open and initialize a PID
pid_presetpid_presetpid_presetpid_preset establish a pre-determined PID operating state
pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint adjust PID setpoint
pid_tunepid_tunepid_tunepid_tune set PID coefficients
pid_updatepid_updatepid_updatepid_update compute new PID state and output



154 Data Acquisition Runtime Library

General Math

icosineicosineicosineicosine return the integer cosine of an integer value
icoswaveicoswaveicoswaveicoswave build an array of integer cosine values
icplxwaveicplxwaveicplxwaveicplxwave build an array of integer sinusoid complex values
isineisineisineisine return the integer sine of an integer value
isinewaveisinewaveisinewaveisinewave build an array of integer sine values
isqrtisqrtisqrtisqrt return the integer square root of an integer value

Requests to Command Interpreter

sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command send a command to the DAPL system interpreter
sys_get_infosys_get_infosys_get_infosys_get_info return system information
sys_get_timesys_get_timesys_get_timesys_get_time return the current time
sys_get_versionsys_get_versionsys_get_versionsys_get_version return the DAPL version number



Data Acquisition Runtime Library 155

C Compiler Runtime Routines

Many routines from the C compiler runtime library are available for use in custom
commands. The compiler runtime library also contains routines that are not
compatible with the Data Acquisition Processor environment. Incompatible routines
generally require operating system services, such as file system, memory management,
and screen displays. If a custom command attempts to use incompatible routines, error
messages will be displayed during linking or compressing. A custom command should
use only functions from the following categories:

• floating point math (include file MATH.H), except 8087 specific routines,
hyperbolic and Bessel functions

• data conversion (include file STDLIB.H ), except ecvt, fcvt, strtod
• string manipulation (include file STRING.H), except strdup, strerror
• buffer manipulation (include files MEMORY.H and STRING.H)
• variable-length argument lists (include file VARARGS.H)

To use floating point math functions, include the Standard C MATH.H file.

Most function prototypes defined in the file CDAPCC.INC are consistent with Standard
C and with the compiler run-time libraries, but there are some exceptions. To make
sure that the correct prototypes are used, the #include directive for the file
CDAPCC.INC should appear after #include directive for all compiler header files.

The following table lists compiler runtime library routines that are compatible with
both the SMALL and FP versions of the Developer's Toolkit for DAPL library.

abs atoi atol bsearch div
exit isalnum isalpha isascii iscntrl
isdigit isgraph islower isprint ispunct
isspace isupper isxdigit itoa labs
ldiv lfind lsearch ltoa memccpy
memchr memcmp memcpy memicmp memmove
memset rand srand strcat strchr
strcmp strcpy strcspn stricmp strlen
strlwr strncat strncmp strncpy strnicmp
strnset strpbrk strrchr strrev strset
strspn strstr strtok strtol strtoul
strupr swab toascii tolower toupper
ultoa _exit _lrotl _lrotr _rotl
_rotr _tolower _toupper



156 Data Acquisition Runtime Library

The mathematical functions that operate on floating point data are supported by the FP
version of the Developer's Toolkit for DAPL library, not by the compiler runtime
library. The following table lists floating-point library routines provided with the FP
version of the Developer's Toolkit for DAPL library. These functions are not available
when using the SMALL version of the Developer's Toolkit for DAPL library.

acos asin atan atan2 atof
ceil cos exp fabs floor
fmod frexp hypot ldexp log
log10 modf pow sin sqrt
tan

The strtod and gcvt functions work only with Microsoft compilers. The gcvt
function works only with the FP versions of the Developer's Toolkit for DAPL library.

Future releases of the compiler runtime libraries may add new compatible functions,
or may change some functions to make them incompatible.



Data Acquisition Runtime Library 157

atof

Convert an ASCII string to a double precision floating point value.

double atof (
const char *string // Pointer to numeric text
);

Parameters
string

A sequence of characters that can be interpreted as a numeric value.

Return Values
The function returns a double precision floating point value. If the input string has
an incorrect form, the function atofatofatofatof returns the value 0.0. The return value is
undefined in case of floating point range errors.

Description
The function atofatofatofatof converts a number represented by a character string to a double
precision floating point value. The input string is a sequence of characters that can
be interpreted as a floating point numeric value. The string must have the following
form:

[sign] [digits]. [digits] [exponent]

Leading or trailing space and/or tab characters are ignored. sign is an optional plus
(+) or minus (-). digits are one or more decimal digits. At least one digit must
be present. The optional exponent consists of an introductory letter e, or E and an
optionally signed decimal number.



158 Data Acquisition Runtime Library

dac_out

Send a value to a digital-to-analog converter asynchronously.

void dac_out (
int dac_number,
int data
);

Parameters
dac_number

A number specifying the digital-to-analog converter channel. This number is 0 or
1 for the analog output ports on the Data Acquisition Processor. Larger numbers
can be used when analog expansion hardware is connected to the Data
Acquisition Processor.

data
A 16-bit number representing the desired output voltage.

Return Values
There is no return value.

Description
The function dac_outdac_outdac_outdac_out sends a value to a digital-to-analog converter. See the
chapter "Voltages and Integers" in the DAPL manual for an explanation of how 16-
bit numbers convert to analog output voltages.

If external analog output expansion hardware is connected to the Data Acquisition
Processor, DAC channel numbers greater than one may be specified. DAC output
expansion is enabled using the DAPL OUTPORT command.

The function dac_outdac_outdac_outdac_out updates the digital-to-analog converters immediately when it
executes. This immediate response makes dac_outdac_outdac_outdac_out useful in low latency
applications. However, it also means that update times depend on the execution
scheduling for the custom command task. Task scheduling depends on the activities
of all other tasks in the multi-tasking DAPL operating system so DAC updates
produced by this function do not typically appear at regular intervals over time. For
precise timing between DAC updates, it is recommended that a custom command
write DAC data to an output channel pipe. An output procedure then can read the
channel data and update the DAC synchronously.



Data Acquisition Runtime Library 159

digital_out

Send 16 data bits to a digital output port.

void digital_out (
int port_number,
int data
);

Parameters
port_number

A number specifying the digital output port. This number is 0 for the digital
output port on the Data Acquisition Processor. Larger numbers can be used when
digital expansion hardware is connected to the Data Acquisition Processor.

data
16 bits of data.

Return Values
There is no return value.

Description
The function digital_outdigital_outdigital_outdigital_out sends sixteen bits of data to the specified digital output
port.

If external digital output expansion hardware is connected to the Data Acquisition
Processor, digital port numbers greater than zero may be specified by the digital
output functions. Digital output expansion is enabled using the DAPL OUTPORT
command.

The function digital_outdigital_outdigital_outdigital_out updates the digital output port immediately when it
executes. This immediate response makes digital_outdigital_outdigital_outdigital_out useful in low latency
applications. However, it also means that update times depend on the execution
scheduling for the custom command task. Task scheduling depends on the activities
of all other tasks in the multi-tasking DAPL operating system so DAC updates
produced by this function do not typically appear at regular intervals over time. For
precise timing of digital output port updates, it is recommended that a custom
command write digital output data to an output channel pipe. An output procedure
then can read the channel data and update the digital output port synchronously.



160 Data Acquisition Runtime Library

digital_set_bit

Set a single bit of a digital output port.

int digital_set_bit (
int bit_number,
int data
);

Parameters
bit_number

Bit identifier number. The value is in the range 0 to 15 for digital port B0, in the
range 16 to 31 for digital expansion port B1, etc.

data
This value must be 0 or 1.

Return Values
The function digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit returns the previous state of bit bit_number.

Description
The function digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit sets the state of bit bit_number of the digital
output port to the value of data, which is 0 or 1.

Bit number 0 is the least significant bit of the digital output port. If external digital
output expansion hardware is present, the value of bit_number can exceed 15.
Digital output expansion is enabled using the DAPL OUTPORT command.

Note: The digital_outdigital_outdigital_outdigital_out function should be called to initialize the bit values on
the digital port before calling this function. The value returned by
digital_set_bitdigital_set_bitdigital_set_bitdigital_set_bit is undefined on power-up and after a RESTART command.

See Also
digital_outdigital_outdigital_outdigital_out



Data Acquisition Runtime Library 161

digital_toggle_bit

Toggle the state of a single bit of a digital output port.

int digital_toggle_bit (
int bit_number
);

Parameters
bit_number

Bit identifier number. The value is in the range 0 to 15 for digital port B0, in the
range 16 to 31 for digital expansion port B1, etc.

Return Values
The function returns the previous state of bit bit_number. The return value is 0 or
1.

Description
The function digital_toggle_bitdigital_toggle_bitdigital_toggle_bitdigital_toggle_bit toggles the state of bit bit_number of the
digital output port. If the current state of the digital output bit is one, the digital
output is set to zero. If the current state of the digital output bit is zero, the digital
output is set to one. The function returns the state of the bit as it was prior to the
toggle operation.

Bit 0 is the least significant bit of the digital output port. Digital output expansion is
enabled using the DAPL OUTPORT command.

Note: The digital_outdigital_outdigital_outdigital_out function must be called to initialize the bit values on the
digital port before calling this function.

See Also
digital_outdigital_outdigital_outdigital_out



162 Data Acquisition Runtime Library

exit

Terminate a task.

void exit (
int exit_code
);

Parameters
exit_code

This parameter is not used and is present only for compatibility with the Standard
C library and the function prototypes defined in the compiler run-time libraries.

Return Values
There is no return value.

Description
The function exitexitexitexit causes a task to terminate. After a task calls exitexitexitexit, DAPL does
not give the task any CPU time, but the task continues to appear on lists of active
tasks produced by the DAPL command TASKSTAT. The task does not release
temporary storage or local variables. Storage de-allocation is not performed until a
DAPL command STOP is executed.



Data Acquisition Runtime Library 163

fft_chngbuf

Modify FFT data pointers.

void  fft_chngbuf (
FFTB * fft, // FFT control block handle
int * real, // Pointer to storage
int * imag // Pointer to storage
);

Restrictions
This function requires DAPL 2000.

Parameters
fft

Pointer variable containing a handle for the FFT control block to be modified.

real
Pointer to data storage for real-valued terms.

imag
Pointer to data storage for imaginary-valued terms.

Return Values
There is no return value.

Description
The function fft_chngbuffft_chngbuffft_chngbuffft_chngbuf changes the real and imaginary data pointers previously
installed in an FFTB. The control block is identified by the handle fft. This
function allows a single FFTB to refer to data blocks from multiple data streams. The
change takes effect with the next operation that uses the specified FFTB.

See Also
fft_initfft_initfft_initfft_init



164 Data Acquisition Runtime Library

fft_init

Define an FFT.

FFTB *fft_init (
int size,
int *realbuf, // Pointer to storage
int *imagbuf, // Pointer to storage
unsigned long window, // Enumeration pointer
int direction, // Enumeration
int solver, // Enumeration
int post, // Enumeration
int options // Bit mask
);

Restrictions
This function requires DAPL 2000.

Parameters
size

The length of the FFT and required data areas. It specifies the number of complex
input items N, where N = 2M for integer M in the range 2 to 14. This range may
be restricted for particular Data Acquisition Processor models and certain DAPL
versions.

realbuf
Pointer to a data storage area for real-valued terms.

imagbuf
Pointer to a data storage area for imaginary-valued terms. The imagbuf pointer
can be null if imaginary data storage is not needed for either input data or output
data.



Data Acquisition Runtime Library 165

window
Either a window operator predefined enumeration, or a pointer to an array of
length size containing the 32-bit values defining a window operator. The
predefined enumeration codes include the following:

WINDOW_RECTANGULAR
WINDOW_HANNING
WINDOW_HAMMING
WINDOW_BARTLETT
WINDOW_BLACKMAN

Optionally, this parameter can specify a pointer to an array of long values
explicitly defining a window. Cast the pointer to an unsigned long type.

direction
One of the following codes:

FFTDIR_FORWARD
FFTDIR_REVERSE

solver
One of the following codes:

FFTSOLN_FAST
FFTSOLN_ACCURATE

post
One of the following codes:

FFTPOST_DEFER
FFTPOST_REAL
FFTPOST_CPLX
FFTPOST_POWER
FFTPOST_NORMPOWER
FFTPOST_MAGNITUDE
FFTPOST_MAG_PHASE

options
“Flag” bits that are combined using bitwise OR operations to select additional
processing options. One option from each of the three groups may be selected:

FFT_REALIN
FFT_CPLXIN

FFT_SEPARATED
FFT_PAIRWISE

FFT_HALFOUT
FFT_FULLOUT



166 Data Acquisition Runtime Library

Return Values
The function returns a pointer to a FFTB configuration block, which is used by all
other FFT functions.

Description
The function fft_initfft_initfft_initfft_init allocates an FFT control block structure and initializes it
with the options that define the characteristics of the FFT and its related operations.
The actual operations are performed separately.

The realbuf and imagbuf parameters specify pointers to data storage areas for
real-valued and imaginary-valued terms respectively. The imagbuf pointer can be
NULL if imaginary data storage is not needed for either input data or output data.
The fft_requestfft_requestfft_requestfft_request function will fetch input data using these pointers. Depending on
processing options, it also uses the same storage for returning results.

The storage must be allocated by the custom command, and must cover all input and
output requirements. The rallocrallocrallocralloc function can be used to obtain storage blocks. The
number of items to reserve is sometimes but not always equal to the number
specified by the size parameter. Some examples:

• Complex input data. When the input data is complex and stored in multiplexed
fashion using the FFT_PAIRWISE option, both real and imaginary terms are
provided by one data source, the realbuf array. The realbuf array requires 2 *
size terms.

• Half-length output data. With processing options FFT_HALF and FFT_CPLX, the
number of real input terms equals size, but after transforming, 1/2 * size
terms each are used for storing the real and imaginary results.

• Power output post-processing. Using real input data and the post-processing
options FFTPOST_POWER and FFT_FULLOUT, the number of terms returned is
size, but the data type is long int rather than int. The realbuf array must
allow for 2 * size terms rather than size terms in its memory allocation.

The window parameter specifies either a pre-defined enumeration code for a
window operator or a pointer to an array of length size containing window operator
terms. The DAPL system can distinguish pointer values from enumeration codes, so
the meaning of the parameter is unambiguous. Unfortunately, C syntax does not
allow parameter type overloading, so a choice must be made between an unsigned
long int or a pointer type. The function fft_initfft_initfft_initfft_init requires the unsigned long
type. If a custom window vector is used, type cast the array storage pointer to an
unsigned long type to satisfy the compiler.



Data Acquisition Runtime Library 167

The direction parameter specifies a forward transform, typically used for
transforming from time-domain data to frequency-domain, or a reverse transform,
typically for transforming from frequency-domain data to time-domain.

The solver parameter allows a selection of computational methods, one optimized
for speed and with noisy data, the other optimized for accuracy with clean, precise
data.

The post and options parameters provide additional control over the
representation of the input data and the output results.

See Chapter 7 for more information about the meaning and application of the
various configuration options.

See Also
fft_requestfft_requestfft_requestfft_request, rallocrallocrallocralloc



168 Data Acquisition Runtime Library

fft_postop

Apply post-processing to an FFT result.

int fft_postop (
FFTB *fft, // FFT control block handle
int *realbuf, // Pointer to storage
int *imagbuf, // Pointer to storage
int post,
int options
);

Restrictions
This function requires DAPL 2000.

Parameters
fft

Pointer variable containing a handle for the FFT control block to be used.

realbuf
Pointer to a data storage area for real-valued terms.

imagbuf
Pointer to a data storage area for imaginary-valued terms.

post
One of the following codes:

FFTPOST_REAL
FFTPOST_CPLX
FFTPOST_POWER
FFTPOST_NORMPOWER
FFTPOST_MAGNITUDE
FFTPOST_MAG_PHASE

options
“Flag” bits that are combined using bitwise OR operations to select additional
processing options. One option from each of the three groups may be selected:



Data Acquisition Runtime Library 169

FFT_SEPARATED
FFT_PAIRWISE

FFT_HALFOUT
FFT_FULLOUT

Return Values
The function returns a nonzero error code if a parameter error is detected, or a 0
code if the operation is completed.

Description
The function fft_postopfft_postopfft_postopfft_postop performs post-transform processing on an FFT result
after FFT computations are completed but before a subsequent FFT is performed
using the same FFTB configuration block. This operation allows additional
processing, beyond that which is done by the original FFT operation. It also allows
separation of input and output processing, so that input data is not replaced by
output data.

When the FFTPOST_DEFER option is selected by the fft_initfft_initfft_initfft_init function, the call to
fft_postopfft_postopfft_postopfft_postop serves in place of the fft_receivefft_receivefft_receivefft_receive function to assure that output
results are available to the custom command.

The parameters are very similar to the processing options of the fft_initfft_initfft_initfft_init function.

The realbuf and imagbuf fields must specify pointers to data storage areas for
real-valued and imaginary-valued output terms. The custom command must allocate
sufficient storage to cover all output requirements.

The post and options parameters provide additional control over the
representation of the input data and the output results.

See Chapter 7 for more information about the various configuration options.

See Also
fft_initfft_initfft_initfft_init, fft_requestfft_requestfft_requestfft_request, fft_statusfft_statusfft_statusfft_status, fft_receivefft_receivefft_receivefft_receive



170 Data Acquisition Runtime Library

fft_receive

Synchronize access to an FFT result.

void  fft_receive (
FFTB * fft // FFT control block handle
);

Restrictions
This function requires DAPL 2000.

Parameters
fft

Pointer variable containing a handle for the FFT control block to be used.

Return Values
There is no return value.

Description
Return from function fft_receivefft_receivefft_receivefft_receive guarantees that results of an FFT operation,
initiated by an fft_requestfft_requestfft_requestfft_request function, are available in the storage areas specified
by the fft_initfft_initfft_initfft_init function. If the operation is not complete, this function suspends
task execution until the operation is complete. Use the fft_statusfft_statusfft_statusfft_status function to
check for a completed operation without blocking the execution of the task.

When the FFTPOST_DEFER option is selected by the fft_initfft_initfft_initfft_init function, the call to
fft_receivefft_receivefft_receivefft_receive may be omitted.

See Also
fft_initfft_initfft_initfft_init, fft_statusfft_statusfft_statusfft_status, fft_receivefft_receivefft_receivefft_receive, fft_requestfft_requestfft_requestfft_request



Data Acquisition Runtime Library 171

fft_request

Initiate FFT processing.

void  fft_request (
FFTB * fft // FFT control block handle
);

Restrictions
This function requires DAPL 2000.

Parameters
fft

Pointer variable containing a handle for the FFT control block to be used.

Return Values
There is no return value.

Description
The function fft_requestfft_requestfft_requestfft_request initiates FFT computation, using the configuration
previously established by the fft_initfft_initfft_initfft_init function. The custom command is required
to place the input data for the FFT operation into the storage arrays prior to making
this function call.

See Also
fft_initfft_initfft_initfft_init



172 Data Acquisition Runtime Library

fft_status

Test for FFT completion.

int  fft_status (
FFTB * fft // FFT control block handle
);

Restrictions
This function requires DAPL 2000.

Parameters
fft

Pointer variable containing a handle for the FFT control block to be used.

Return Values
The function returns a nonzero value when the computations are completed, and a
zero value when computations are not yet completed.

Description
The function fft_statusfft_statusfft_statusfft_status reports whether an FFT computation initiated by the
fft_requestfft_requestfft_requestfft_request function has completed. It is used to avoid blocking task execution.
If blocking task execution is useful, the fft_receivefft_receivefft_receivefft_receive function can be called
directly, and it will wait for the transform results to become available.

See Also
fft_requestfft_requestfft_requestfft_request, fft_receivefft_receivefft_receivefft_receive



Data Acquisition Runtime Library 173

fir_advance

Bypass selected FIR filter computations.

int fir_advance (
FIRB *fir, // FIR filter control block handle
int count
);

Restrictions
The function requires DAPL 2000.

Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be
adjusted.

count
A value specifying the number of items to be removed from the data source.

Return Values
The function returns the number of additional items that must be removed from the
data source.

Description
The function fir_advancefir_advancefir_advancefir_advance is an optional function to advance data through a FIR
filter internal shift register, bypassing selected filtering operations. A normal
filtering operation removes old data from the filter, adds new data to replace them,
and then performs filter computations. The fir_advancefir_advancefir_advancefir_advance function removes old
data, without replacing with new data, and without performing any filter
computations.

The function fir_advancefir_advancefir_advancefir_advance reports the number of additional items that must be
removed from the data source. If just a few items are bypassed, the filter shift
register is not emptied, the function returns the value zero, and filtering resumes
automatically when enough new data are provided by function fir_requestfir_requestfir_requestfir_request to
refill the shift register. If the count is larger than the number of items present in the



174 Data Acquisition Runtime Library

shift register, fir_advancefir_advancefir_advancefir_advance reports the number of additional items that must be
skipped by the calling program before refilling the filter shift register.

The most common application of function fir_advancefir_advancefir_advancefir_advance is data skipping, for
example, capturing data at a high sampling rate to preserve high frequency
information, but eliminating large blocks to avoid excessive data volume. Another
application is specialized decimating filters.

See Also
fir_requestfir_requestfir_requestfir_request



Data Acquisition Runtime Library 175

fir_change

Modify FIR characteristics.

int fir_change (
FIRB *fir, // FIR filter control block handle
int * coeffs, // Pointer to coefficient array
int length,
int scale,
int decimate
);

Restrictions
The function requires DAPL 2000.

Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be
modified.

coeffs
An array containing the coefficients that determine the computational
characteristics of the filter.

length
A value specifying the number of terms in the coeffs array, up to 1024.

scale
A value specifying an optional non-negative scaling constant.

decimate
A non-negative number.

Return Values
If the function succeeds and the change is installed successfully, the return value is
0. If the space previously allocated for the filter is not sufficient, or if any of the new
filter characteristics are invalid, a nonzero error code is returned.



176 Data Acquisition Runtime Library

Description
The function fir_changefir_changefir_changefir_change changes filter characteristics after initialization by the
fir_initfir_initfir_initfir_init function. The parameters of this function correspond to the parameters of
the fir_initfir_initfir_initfir_init function, with the addition of the first parameter fir, which specifies
the filter to be modified. This function does not allocate a new FIRB structures.

This function should be used with care, because it can affect efficiency, output
continuity, phase and latency. For example, if the filter is made longer, the internal
shift register previously filled is suddenly not filled. The filter will cease generating
output values until a number of new samples are provided. Similarly, reducing the
filter length can leave the filter somewhat overfilled, causing an unexpected burst of
output results the next time a filtering operation is requested. The filter reserves
extra space for computational efficiency when it is initialized, but efficiency may
drop if that extra space is consumed by a longer filter structure.

Changing coefficient values in coeffs data storage after initialization can interfere
with the evaluation of the filter. The only guaranteed way to "tune" coefficients
safely is to compute them in separate array storage, and then switch to the new array
with a call to fir_changefir_changefir_changefir_change.

All parameter values must be specified. If some of the parameters are unchanged,
specify the old values.

See Also
fir_initfir_initfir_initfir_init



Data Acquisition Runtime Library 177

fir_init

Define a FIR filter.

FIRB *fir_init (
int * coeffs, // Pointer to coefficient array
int length,
int scale,
int decimate
);

Restrictions
The function requires DAPL 2000.

Parameters
coeffs

An array containing the coefficients that determine the computational
characteristics of the filter.

length
A value specifying the number of terms in the coeffs array, up to 1024.

scale
A value specifying an optional non-negative scaling constant.

decimate
A non-negative number.

Return Values
The function returns a pointer containing a handle value required by all subsequent
filter operations.

Description
The function fir_initfir_initfir_initfir_init allocates a FIR digital filter control block structure and
initializes it with the options which define the characteristics of the filter. The actual
operations are performed separately.

The coefficients which determine the computational characteristics of the filter are
provided to the function fir_initfir_initfir_initfir_init in the array coeffs. The length parameter



178 Data Acquisition Runtime Library

specifies the number of terms in the coeffs array, up to 1024. The length of the
filter equals the length of this vector.

The scale parameter specifies an optional non-negative scaling constant. The
scaling is applied after other filter computations, dividing the intermediate filter
result by the specified amount to produce the final filter result. The scale factor must
be an exact power of 2, and must be smaller than the length parameter. The final
scaling operation is bypassed if the scale parameter has a value 1 or 0.

The decimate parameter is a non-negative number. If the decimate parameter is
greater than 1, one filter value is computed and then decimate-1 values are
skipped, so that decimate values are consumed for each filter output value
generated. A decimate value of 1 or 0 indicates that no decimation is to be
applied, and each input value will generate one corresponding output value.

The returned value is a handle required by all subsequent filter operations. If this
returned pointer is a NULL pointer, there is a parameter error, and the fir_initfir_initfir_initfir_init
function was unable to configure a filter as specified.

See Chapter 7 for more information about the meaning and application of the
various configuration options.

See Also
fir_changefir_changefir_changefir_change, fir_requestfir_requestfir_requestfir_request



Data Acquisition Runtime Library 179

fir_receive

Synchronize access to FIR result.

void  fir_receive (
FIRB * fir // FIR filter control block handle
);

Restrictions
The function requires DAPL 2000.

Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be
accessed.

Return Values
There is no return value.

Description
Completion and return from function fir_receivefir_receivefir_receivefir_receive guarantees that results of a
digital filtering operation are available in the data array specified to the
fir_requestfir_requestfir_requestfir_request function. The return value of the fir_requestfir_requestfir_requestfir_request or fir_statusfir_statusfir_statusfir_status
function indicates the number of items placed into the array. The data array must not
be used for any other purpose between the calls to the fir_requestfir_requestfir_requestfir_request and
fir_receivefir_receivefir_receivefir_receive function.

See Also
fir_initfir_initfir_initfir_init, fir_requestfir_requestfir_requestfir_request, fir_statusfir_statusfir_statusfir_status, fir_receivefir_receivefir_receivefir_receive



180 Data Acquisition Runtime Library

fir_request

Initiate FIR filter processing.

int  fir_request (
FIRB * fir, // FIR filter control block handle
int * data, // Data to be filtered
int count
);

Restrictions
The function requires DAPL 2000.

Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be used.

data
An array containing the data to which the filter is applied. Result values will
replace the original data in this array.

count
The number of filter input values in the data array.

Return Values
The function returns a status code. If filter computations are in progress, the
returned code is -1. If the amount of data provided in the data array is not sufficient
to fill the internal filter shift register, and computations cannot proceed, a 0 is
returned. If the particular model of Data Acquisition Processor running this
command does not have a separate DSP processor, the function can return a positive
value indicating the number of results generated.

Description
The function fir_requestfir_requestfir_requestfir_request initiates digital filter computations, using the
configuration previously established by the fir_initfir_initfir_initfir_init function. The filter operation
is applied to data provided in the data array. The count parameter specifies how
many items are provided to the filter.



Data Acquisition Runtime Library 181

Result values replace the original data in the data array. Using the fft_statusfft_statusfft_statusfft_status
function to determine the number of results, rather than depending on the return
value from the fir_requestfir_requestfir_requestfir_request function, works with any Data Acquisition Processor
model.

See Also
fft_initfft_initfft_initfft_init, fft_statusfft_statusfft_statusfft_status, fft_receivefft_receivefft_receivefft_receive



182 Data Acquisition Runtime Library

fir_status

Test for completion of FIR filter processing.

int  fir_status (
FIRB * fir // FIR filter control block handle
);

Restrictions
The function requires DAPL 2000.

Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be
examined.

Return Values
If filter computations are in progress but not completed, the returned code is -1. If
the amount of data provided to the filter was not sufficient to fill the internal filter
shift register, and computations could not proceed, a 0 is returned. If a positive value
is returned, the filter operation is complete and this number of results was generated.
Result values replace the original data in the data array provided to the
fir_requestfir_requestfir_requestfir_request function.

Description
The function fir_statusfir_statusfir_statusfir_status reports whether a digital filtering operation, initiated by
a call to the fir_requestfir_requestfir_requestfir_request function for the specified filter fir, is completed.

This function works with any Data Acquisition Processor model.

See Also
fir_initfir_initfir_initfir_init, fir_requestfir_requestfir_requestfir_request, fir_receivefir_receivefir_receivefir_receive



Data Acquisition Runtime Library 183

fprintf

Format and print a string.

int fprintf (
PIPE *output, // Pipe handle
char *format_string, // Pointer to conversion string
... // Additional parameters
);

Parameters
output

Pointer variable containing a handle for the pipe to be examined.

format_string
A string of ASCII characters controlling the conversions.

...
A varying number of characters appearing after the mandatory parameters.

Return Values
The function returns the number of characters sent.

Description
The function fprintffprintffprintffprintf formats characters and values into a string and sends the
string to the byte output pipe specified in output. This function is similar to the
fprintf function defined in Standard C, except that the output destination is a
byte pipe rather than a STREAM. The full set of Standard C conversion codes is
supported in format_string, except for long double conversions and data types.
Floating point types and conversions are available when using the FP version of the
Developer's Toolkit for DAPL library.

Note: To keep task stack requirements to a minimum, there is a limit on the length
of the final formatted string. For DAPL 2000 the limit is 132 characters, and for
DAPL version 4 it is 100. Be particularly careful not to format a very large floating
point number using the %f format conversion code.



184 Data Acquisition Runtime Library

fsend

Print a string.

void fsend (
PIPE *output, // Pipe handle
char *str // Pointer to a string of characters
);

Parameters
output

Pointer variable containing a handle for the pipe to be examined.

str
The string of characters to send to the byte output pipe.

Return Values
There is no return value. The first character of str is set to '\0' before fsendfsendfsendfsend
returns; this sets str to the empty string.

Description
The function fsendfsendfsendfsend sends str to the byte output pipe output without formatting.

See Also
sendsendsendsend



Data Acquisition Runtime Library 185

icosine

Return the integer cosine of an integer value.

int icosine (
int ang
);

Parameters
ang

An input angle. The angle is interpreted in radians, as a 16-bit signed fractional
multiple of PI. The integer values -32768 to +32768 represent angles of (-32768
* PI) / 32768 to (+32767 * PI) / 32768. For example, an input value of 16384
represents an angle of PI/2 radians and an input value of -16384 represents an
angle of -PI/2 radians.

Return Values
The function returns the trigonometric cosine of angle ang.The result is in
undimensioned units, as a 16-bit signed fraction of 1.0. For example, a result value
of 16384 represents a cosine value of 1/2.

Description
The function icosineicosineicosineicosine returns the trigonometric cosine of angle ang in a fixed-point
representation. Ideally the values -1.0 through +1.0 would be represented by the
fixed point range -32768 to +32768, but due to a non-symmetry of the processor
hardware, the value of +32768 cannot be reached. For most purposes, it is sufficient
to treat the value +32767 as the representation for cosine value 1.0.

The integer cosine computation performed by icosineicosineicosineicosine is considerably faster than
the floating point cosine computation performed by the cos function in the Standard
C library. For many applications the fixed point approximation is sufficient.

See Also
icoswaveicoswaveicoswaveicoswave



186 Data Acquisition Runtime Library

icoswave

Build an array of integer cosine values.

int icoswave (
long ltb,
long lcyc,
long lw, // Enumeration
long iscale,
void *storage // Pointer to data storage array
);

Restrictions
This function requires DAPL 2000.

Parameters
ltb

The number of entries actually constructed in the table.

lcyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

lw
A code indicating the data type to place into storage.

iscale
A value specifying a signed scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns a Boolean error flag. The returned value is 0 if the data array is
constructed successfully, or nonzero otherwise.

Description
The function icoswaveicoswaveicoswaveicoswave is a utility for constructing trigonometric waveform tables.
Applications include specialized transforms and signal generation.



Data Acquisition Runtime Library 187

A table with ltb values is constructed in the storage location specified by pointer
storage. The lcyc parameter specifies the number of samples necessary to cover
one complete cycle (two PI radians) of the wave. The ltb parameter specifies the
number of entries actually constructed in the table. The ltb value may be smaller or
greater than the lcyc parameter. For example, 1/4 cycle of a cosine wave of 2000
points, including the two endpoints bounding this interval, can be specified by
setting the lcyc parameter to (2000/4)+1.

The values are stored starting at the location specified by pointer storage. The
type of the data stored there depends on the value of the lw parameter. If lw is
eWaveWord, data of type int is placed into the array storage. If lw is eWaveLong,
data of type long is placed into the array storage.

This function does not dynamically allocate memory for the waveform data. This
allows great flexibility, but it also means that care must be taken to allocate
sufficient storage and correctly specify the storage pointer. For example, in the 1/4
wave example above, storage for the 501 integer values can be requested at task
initialization time using the rallocrallocrallocralloc function:

int *waveptr;
waveptr = ralloc((500+1)*sizeof(int));

The values may be scaled by a signed multiplier given by the iscale parameter.
For 16-bit data, the multiplier can range from -32767 to +32767; and for 32-bit data
the multiplier can range from -2147483647 to +2147483647. The multiplier can be
interpreted as a bound on the range of the waveform, or as a binary fraction
multiplier in the range -1 to +1. An iscale parameter value of zero means that the
waveform covers the maximum range, with no scaling applied to the data.

The waveform values are represented as a fixed-point binary fraction. The most
significant bit is the sign bit, and the remaining bits are a binary fraction, with the
first bit after the binary point immediately following the sign bit.

The icoswaveicoswaveicoswaveicoswave function returns an error code. An error condition will be indicated
if any of the following constraints are violated:

• The data type code is neither eWaveWord nor eWaveLong.
• The lcyc parameter is greater than 65536.
• The total amount of storage required for the table is greater than 32768 bytes.



188 Data Acquisition Runtime Library

Note: The greatest accuracy is obtained when the cycle length specified by
parameter lcyc is equal to a power of 2 and the waveform is not scaled.

See Also
rallocrallocrallocralloc



Data Acquisition Runtime Library 189

icplxwave

Build an array of integer sinusoid complex values.

int icplxwave (
long ltb,
long lcyc,
long lw, // Enumeration
long iscale,
void *storage // Pointer to data storage array
);

Restrictions
This function requires DAPL 2000.

Parameters
ltb

The number of entries actually constructed in the table.

lcyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

lw
A code indicating the data type to place into storage. Specify eWaveWord or
eWaveLong.

iscale
A value specifying a signed scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns an array of sinusoid values. The values are stored pairwise,
cosine term first followed by the sine term.

Description
The function icplxwaveicplxwaveicplxwaveicplxwave is a utility for constructing trigonometric waveform tables.
Applications include specialized transforms and signal modulation. This function is



190 Data Acquisition Runtime Library

like a combination of the icoswaveicoswaveicoswaveicoswave function and the isinewaveisinewaveisinewaveisinewave function, except
that the returned values are stored pairwise, cosine term first followed by the sine
term, rather than in separate areas.

Because both cosine and sine terms are stored in the data array, the amount of
storage allocated for the data array is twice as much as required for the icoswaveicoswaveicoswaveicoswave
function. In other respects, the parameters are the same as for the icoswaveicoswaveicoswaveicoswave
function.

See Also
icoswaveicoswaveicoswaveicoswave, isinewaveisinewaveisinewaveisinewave



Data Acquisition Runtime Library 191

isine

Return the integer sine of an integer value.

int isine (
int ang
);

Parameters
ang

An input angle, interpreted in radians, as a 16-bit signed fractional multiple of PI.
The integer values -32768 to +32768 represent angles of (-32768 * PI) / 32768 to
(+32767 * PI) / 32768. For example, an input value of 16384 represents an angle
of PI/2 radians and an input value of -16384 represents an angle of -PI/2 radians.

Return Values
The function returns the trigonometric sine of angle ang. The result is in
undimensioned units, as a 16-bit signed fraction of 1.0. For example, a result value
of 16384 represents a sine value of 1/2.

Description
The function isineisineisineisine returns the trigonometric sine of angle ang in a fixed-point
representation. Ideally the values -1.0 through +1.0 would be represented by the
fixed point range -32768 to +32768, but due to a non-symmetry of the processor
hardware, the value of +32768 cannot be reached. For most purposes, it is sufficient
to treat the value +32767 as the representation for cosine value 1.0.

The integer sine computation performed by isineisineisineisine is considerably faster that the
floating point sine computation performed by the sin function in the Standard C
library. For many applications the fixed point approximation is sufficient.

See Also
isinewaveisinewaveisinewaveisinewave



192 Data Acquisition Runtime Library

isinewave

Build an array of integer sine values.

int isinewave (
long ltb,
long lcyc,
long lw, // Enumeration
long iscale,
void *storage // Pointer to data storage array
);

Restrictions
This function requires DAPL 2000.

Parameters
ltb

The number of entries actually constructed in the table.

lcyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

lw
A code indicating the data type to place into storage. Specify eWaveWord or
eWaveLong.

iscale
A value specifying a signed scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns a Boolean error flag. The returned value is 0 if the data array is
constructed successfully, or nonzero otherwise.

Description
The function isinewaveisinewaveisinewaveisinewave is a utility for constructing trigonometric waveform tables.
Applications include specialized transforms and signal generation. This function and



Data Acquisition Runtime Library 193

its parameters are identical to the icoswaveicoswaveicoswaveicoswave function, except that the values of the
sine function rather than the cosine function are returned in the data array.

See Also
icoswaveicoswaveicoswaveicoswave



194 Data Acquisition Runtime Library

isqrt

Return the integer square root of an integer value.

long int isqrt (
long int x
);

Parameters
x

A long integer.

Return Values
The function returns the integer part of the real-valued square root of the long
integer parameter x. If the input value is negative, isqrtisqrtisqrtisqrt returns zero.

Description
The integer square root computation performed by isqrtisqrtisqrtisqrt is considerably faster that
the floating-point square-root computation performed by the function sqrt.



Data Acquisition Runtime Library 195

memcpy

Copy one memory region to another memory region.

char *memcpy (
char *dest, // Pointer to data storage array
char *src, // Pointer to data storage array
unsigned int count
);

Parameters
dest

A memory region where copied bytes are written.

src
A memory region where the original data are found.

count
Number of bytes to copy.

Return Values
The function returns the value of pointer dest.

Description
The function memcpymemcpymemcpymemcpy copies count bytes from src to dest. The two memory
regions must not overlap.



196 Data Acquisition Runtime Library

param_error

Generate an error message and then terminate task.

void param_error (
);

Parameters
This function requires no parameters.

Return Values
There is no return value.

Description
The function param_errorparam_errorparam_errorparam_error prints the following error message and then calls exitexitexitexit:

<name>: parameter error

If the DAPL ERRORQ option is on, the error message is suppressed and ERRORQ is
set to a nonzero value.

See Also
param_error_msgparam_error_msgparam_error_msgparam_error_msg, exitexitexitexit



Data Acquisition Runtime Library 197

param_error_msg

Generate a task error message and then terminate task.

void param_error_msg (
enum ParamError pecode, // Enumeration
int ip
);

Parameters
pecode

A code indicating the type of parameter error to be described in the error
message.

The value is one of the following:

pe_GeneralError No
pe_LengthInconsistent Vector or array size mismatch
pe_SizeInconsistent Precision error
pe_TypeInconsistent Inconsistent data types
pe_VaueInconsistent Inconsistent parameter value
pe_ValueOutOfRange Range limit exceeded
pe_ValueNotAllowed Invalid parameter value
pe_OptionNotAllowed Invalid optional parameter
pe_ParamMissing Invalid number of parameters
pe_ExtraParam Invalid number of parameters
pe_ParamType Invalid parameter type

ip
The value of this parameter indicates which parameter is incorrect, counting
parameters from left to right starting with 1.

Return Values
There is no return value.

Description
The function param_error_msgparam_error_msgparam_error_msgparam_error_msg prints an error message in the following format
and then calls exitexitexitexit to terminate the task:



198 Data Acquisition Runtime Library

Error 1236: <cmdname> - parameter <ip> - <descriptive text>

Values for pecode are defined in the file PARAMS.H. Specify pecode by name. The
DAPL operating system supplies the cmdname, and also provides the
descriptive text based on the value of the parameter pecode.

If the DAPL ERRORQ option is on, the error message is suppressed and ERRORQ is
set to a nonzero value.

The function param_error_msgparam_error_msgparam_error_msgparam_error_msg should be used rather than function
param_errorparam_errorparam_errorparam_error when more diagnostic information is necessary to identify the error.

See Also
param_errorparam_errorparam_errorparam_error, exitexitexitexit



Data Acquisition Runtime Library 199

param_process

Locate task parameters and check types.

void **param_process (
PIB **plib, // Parameter block handle
int *argc, // Pointer to integer
int min_arg,
int max_arg,
... // Additional parameters
);

Parameters
plib

Pointer variable containing a handle for the PIB to be examined.

argc
Pointer to a variable reserved for the number of actual parameters.

min_arg
The minimum number of task parameters.

max_arg
The maximum number of task parameters.

...
A varying number of data type names appear after the mandatory parameters.

Return Values
There is no return value.

Description
The function param_processparam_processparam_processparam_process generates an argument vector from a task's
parameter-list information block (PLIB). The function places the number of actual
parameters in argc and returns a pointer to an array argv of task arguments. The
parameters then can be referenced by indexing argv :



200 Data Acquisition Runtime Library

argv[0]  - the name of the custom command
argv[1]  - parameter 1
argv[2]  - parameter 2
argv[3]  - parameter 3
       .
       .
       .

Note that this method of referencing task parameters is very similar to the manner in
which Standard C references command line parameters. The differences are that
Standard C command line parameters are always strings, while task parameters can
be other data types; and Standard C includes argv[0] in its parameter count while
DAPL does not.

The function param_processparam_processparam_processparam_process also checks that the numbers and types of the
parameters passed to a task are correct. The number of actual parameters specified
by a task definition using this command must be between min_arg and max_arg.
The types of the parameters must match the parameter types that follow max_arg.
The number of parameters after max_arg must equal the value of max_arg.

The file CDAPCC.H defines a number of type names that are allowed in the
param_processparam_processparam_processparam_process parameter list:

T_PIPE_B  byte pipe
T_PIPE_W  word pipe
T_PIPE_L  long pipe
T_PIPE_FL  float pipe
T_TRIGGER  trigger
T_VAR_W  word variable
T_VAR_L  long variable
T_CONST_W  word constant
T_CONST_L  long constant
T_RFLAG  region flag
T_STR  string
T_VECTOR_W  word vector
T_VECTOR_L  long vector (DAPL 2000 only)

If a task allows several types for a parameter, the C bitwise “or” operation can be
used to combine the type names.

If param_processparam_processparam_processparam_process finds a parameter list error, the function prints an error message
and halts the task. If an error occurs when the DAPL ERRORQ option is on, the error
message is suppressed and ERRORQ is set to a nonzero value.



Data Acquisition Runtime Library 201

param_type

Test a task parameter type.

int param_type (
PIB **plib, // Parameter block handle
int pnum
);

Parameters
plib

Pointer variable containing a handle for the PIB to be examined.

pnum
Task parameter number.

Return Values
The function returns one of  parameter type codes used with the param_processparam_processparam_processparam_process
function. The code specifies the type of task parameter number pnum.

Description
The function param_typeparam_typeparam_typeparam_type returns the type of task parameter number pnum.
Parameters are numbered starting with parameter one. The returned value is a
parameter type code, one of the codes used with the param_processparam_processparam_processparam_process function.

This function is typically used for supplementary parameter type checking after the
param_processparam_processparam_processparam_process function has limited the possibilities. For example, if function
param_processparam_processparam_processparam_process allows T_PIPE_W or T_PIPE_L for a parameter, the param_typeparam_typeparam_typeparam_type
function can then distinguish between these two types.

See Also
param_processparam_processparam_processparam_process



202 Data Acquisition Runtime Library

pbuf_get

Get a block of data from a pipe.

void pbuf_get (
PBUF *inbuf // Pipe buffer handle
);

Parameters
inbuf

Pointer variable containing a handle for the pipe buffer control block to be used.

Return Values
There is no return value.

Description
The function pbuf_getpbuf_getpbuf_getpbuf_get reads a block of data from a pipe into the data array of pipe
buffer inbuf.

The pipe buffer control block contains a field that points to the pipe from which data
will be read. This field is initialized by the function pbuf_openpbuf_openpbuf_openpbuf_open.

The values pbuf_max_cnt and pbuf_min_cnt of the PBUF must satisfy the
following restrictions:

0 < pbuf_max_cnt <= MAX_BUF
0 <= pbuf_min_cnt <= pbuf_max_cnt

MAX_BUF is the maximum data array size; this is selected when a pipe buffer control
block is allocated by pbuf_openpbuf_openpbuf_openpbuf_open.

The function pbuf_getpbuf_getpbuf_getpbuf_get automatically sets pbuf_cnt to the number of data values
read into the data array. The value can be accessed using function pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt.

The pbuf_max_cnt and pbuf_min_cnt are used by pbuf_getpbuf_getpbuf_getpbuf_get to determine how
many values should be read into the data array. The function pbuf_getpbuf_getpbuf_getpbuf_get transfers a
maximum of pbuf_max_cnt values from the input pipe to the data array. If the
input pipe contains less than pbuf_min_cnt values, pbuf_getpbuf_getpbuf_getpbuf_get suspends the task
until sufficient data values are available in the input pipe.



Data Acquisition Runtime Library 203

If pbuf_min_cnt is zero, the function pbuf_getpbuf_getpbuf_getpbuf_get returns to the caller regardless of
whether any data were available in the associated pipe. This feature is useful to
avoid suspending execution of the task when no data are available. When using this
feature, be especially careful to check for zero available items by using the
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt function.

The function pbuf_getpbuf_getpbuf_getpbuf_get overwrites old data in the data array.

See Also
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt, pbuf_openpbuf_openpbuf_openpbuf_open



204 Data Acquisition Runtime Library

pbuf_get_cnt

Determine the current count of a pipe buffer.

unsigned int pbuf_get_cnt (
PBUF *pb // Pipe buffer handle
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the current count field of a pipe buffer control block.

Description
The function pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt obtains the current count field of a pipe buffer control
block. The current count contains the number of valid data values in the pipe buffer's
data array. This function is typically called after calling the function pbuf_getpbuf_getpbuf_getpbuf_get to
determine the number of values that have been obtained from the associated pipe.

See Also
pbuf_getpbuf_getpbuf_getpbuf_get



Data Acquisition Runtime Library 205

pbuf_get_data_ptr

Get a pointer to the data array of a pipe buffer.

void *pbuf_get_data_ptr (
PBUF *pb // Pipe buffer handle
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
There is no return value.

Description
The function pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr returns a pointer to the storage array area of a
pipe buffer control block. The returned pointer should be cast to an appropriate
pointer type depending on the type of data.

This function is commonly used to obtain direct access to data read into the pipe
buffer storage array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

See Also
pbuf_getpbuf_getpbuf_getpbuf_get



206 Data Acquisition Runtime Library

pbuf_get_max_cnt

Determine the maximum pipe buffer count.

unsigned int pbuf_get_max_cnt (
PBUF *pb // Pipe buffer handle
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the maximum number of items that can be read into the pipe
buffer control block’s data array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

Description
The routine pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt reports the maximum number of items that can be
read into the pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get. The maximum
count field is initialized to the size of the pipe buffer's data array by pbuf_openpbuf_openpbuf_openpbuf_open.

The function pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt is typically used to obtain information about a
buffer control block that has been initialized previously, so that it is not necessary to
maintain separate information about storage sizes of various PBUF structures.

See Also
pbuf_getpbuf_getpbuf_getpbuf_get, pbuf_openpbuf_openpbuf_openpbuf_open



Data Acquisition Runtime Library 207

pbuf_get_min_cnt

Determine the minimum pipe buffer count.

unsigned int pbuf_get_min_cnt (
PBUF *pb // Pipe buffer handle
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the minimum number of items that can be read into the pipe
buffer control block’s data array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

Description
The routine pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt reports the minimum number of items that can be
read into the pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get. The minimum count
field is initialized to 1 by pbuf_openpbuf_openpbuf_openpbuf_open.

The function pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt is typically used to obtain information about a
buffer that has been initialized previously, so that it is not necessary to maintain
separate information about storage sizes of various PBUF structures.

See Also
pbuf_getpbuf_getpbuf_getpbuf_get, pbuf_openpbuf_openpbuf_openpbuf_open, pbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cntpbuf_get_max_cnt



208 Data Acquisition Runtime Library

pbuf_open

Open a pipe buffer.

PBUF *pbuf_open (
PIPE *pipe, // Pipe handle
unsigned int bufsize
);

Parameters
pipe

Pointer variable containing a handle for the associated pipe.

bufsize
The maximum number of data values that the array can hold.

Return Values
The function returns a pointer containing a handle to a PBUF control structure.

Description
The function pbuf_openpbuf_openpbuf_openpbuf_open allocates a pipe buffer control block and a data array for
pipe pipe. The size of the data array is determined by bufsize, which specifies the
maximum number of data values the array can hold. Therefore, the size of the data
array, in bytes, is given by

bufsize * pipe_width(pipe)

The maximum size of the data array must not exceed 65520 bytes.

The function pbuf_openpbuf_openpbuf_openpbuf_open also initializes three internal fields:

pbuf_cnt = 0
pbuf_min_cnt = 1
pbuf_max_cnt = bufsize

These initializations mean that the data array initially contains no data, at least one
datum should be placed into the buffer when fetching data from a pipe, and no more
than bufsize items can be placed into the data array storage area at any time.



Data Acquisition Runtime Library 209

If a buffer size of zero is passed to pbuf_openpbuf_openpbuf_openpbuf_open, the data management portion of a
pipe buffer control block is allocated, but storage for the data array is not allocated.
Separate operations must be performed to obtain storage and complete initialization
of the internal fields before the PBUF is used to transfer data into or out of a pipe.
The functions pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr, pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt, and
pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt must be called to initialize the internal fields.

Note: Pipe pipe must be opened using pipe_openpipe_openpipe_openpipe_open before pbuf_openpbuf_openpbuf_openpbuf_open is called.

See Also
pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr, pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt, pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt, pipe_openpipe_openpipe_openpipe_open



210 Data Acquisition Runtime Library

pbuf_put

Write a block of data to a pipe.

void pbuf_put (
PBUF *outbuf // Pipe buffer handle
);

Parameters
outbuf

Pointer variable containing a handle for the pipe buffer control block used.

Return Values
There is no return value.

Description
The function pbuf_putpbuf_putpbuf_putpbuf_put writes a block of data from the data array of outbuf to a
pipe.

The pipe buffer contains a field that points to the pipe to be written. This field is
initialized by the function pbuf_openpbuf_openpbuf_openpbuf_open.

The function pbuf_putpbuf_putpbuf_putpbuf_put requires that the pbuf_cnt field be set to the number of
data values to transfer. On exit, pbuf_putpbuf_putpbuf_putpbuf_put sets the pbuf_cnt field to zero.

If pbuf_putpbuf_putpbuf_putpbuf_put cannot add the required number of values to the pipe because the
maximum size of the pipe has been reached, the calling task either goes to sleep
until the pipe has room or throws out the data and returns immediately. Whether the
task goes to sleep or returns immediately is selected by the DAPL WAIT /NOWAIT
parameter when the pipe is defined using the DAPL command PIPES.

See Also
pbuf_openpbuf_openpbuf_openpbuf_open



Data Acquisition Runtime Library 211

pbuf_set_cnt

Set the current count field of a pipe buffer.

void pbuf_set_cnt (
PBUF *pb, // Pipe buffer handle
unsigned int count
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The number of data in the data storage array of the PBUF.

Return Values
The function has no return values.

Description
The function pbuf_set_cntpbuf_set_cntpbuf_set_cntpbuf_set_cnt places a number into the current count field of a pipe
buffer control block. This function is typically called after copying data into the
PBUF storage area, but before calling the function pbuf_putpbuf_putpbuf_putpbuf_put, to inform the system
of the number of items available for transfer to the associated pipe.

See Also
pbuf_putpbuf_putpbuf_putpbuf_put



212 Data Acquisition Runtime Library

pbuf_set_data_ptr

Assign a data storage array area to a pipe buffer handle.

int *pbuf_set_data_ptr (
PBUF *pb, // Pipe buffer handle
void *data // Pointer to data storage array
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer to be examined.

data
Pointer to a data storage array.

Return Values
There is no return value.

Description
pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr assigns a data storage array area to a pipe buffer. The data
array assigned by pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr    can be type int, long, or float, and
should be consistent with the type of data in the pipe.

This function is commonly used to share a common buffer between a PBUF for
reading data from one pipe and another PBUF for writing data to a second pipe.
Typically, the function pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr is used to obtain the address of the
storage area for the first pipe buffer, then the function pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr
assigns that pointer value to the second pipe buffer. Usually, when a storage area is
assigned, it is also necessary to adjust the internal buffer size fields by calling the
pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt and pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt functions.

See Also
pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt, pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt, pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr



Data Acquisition Runtime Library 213

pbuf_set_max_cnt

Set the maximum pipe buffer count.

unsigned int pbuf_set_max_cnt (
PBUF *pb, // Pipe buffer handle
int count
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The maximum number of items that can be read into the pipe buffer control
block’s data array.

Return Values
The function specifies the maximum number of items count that can be read into
the pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

Description
The routine pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt specifies the maximum number of items count
that can be read into the pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get. The
maximum count field is initialized to the size of the pipe buffer's data array by
pbuf_openpbuf_openpbuf_openpbuf_open.

The function pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt is typically used to limit the number of items to
be read for a specific purpose, even though a larger storage area is available for
other purposes. The specified maximum must be greater than or equal to the
minimum count specified for the PBUF, but must never exceed the amount of storage
available in the PBUF data storage area.

See Also
pbuf_openpbuf_openpbuf_openpbuf_open, pbuf_getpbuf_getpbuf_getpbuf_get, pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt



214 Data Acquisition Runtime Library

pbuf_set_min_cnt

Set the minimum pipe buffer count.

unsigned int pbuf_set_min_cnt (
PBUF *pb, // Pipe buffer handle
int count
);

Parameters
pb

Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The minimum number of items that can be read into the pipe buffer control
block’s data array.

Return Values
The function sets the minimum number of items count that can be read into the
pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get.

Description
The routine pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt sets the minimum number of items count that
can be read into the pipe buffer's data array by the function pbuf_getpbuf_getpbuf_getpbuf_get. The
minimum count must not be negative and must never exceed the amount of storage
available in the PBUF storage array or the limit set by the function
pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt.

The function pbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cntpbuf_set_min_cnt is typically used to obtain data in fixed block
sizes rather than whatever amounts happen to be available. Fetching fixed-size
blocks also requires calling the routine pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt to set the minimum
count and the maximum count equal.

See Also
pbuf_getpbuf_getpbuf_getpbuf_get, pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt



Data Acquisition Runtime Library 215

pid_open

Open and initialize a PID control block.

PID *pid_open (
int val
);

Parameters
val

A value used to initialize PID computations. This value is an estimate or sample
of the controlled system output.

Return Values
The function returns a pointer containing a handle to a PID control structure.

Description
The function pid_openpid_openpid_openpid_open allocates a PID control structure and returns a handle for
that structure. The estimated initial value val of the controlled system's output is
used to initialize PID computations.

If a good estimate for val is not available, a sample of the output of the controlled
system can be used as the initialization value. Some systems start from a “zero
state,” and for these systems, a constant zero value can be specified.

Note: pid_openpid_openpid_openpid_open must be called before the pid_tunepid_tunepid_tunepid_tune, pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint, or
pid_updatepid_updatepid_updatepid_update functions are called.

See Also
pid_updatepid_updatepid_updatepid_update, pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint, pid_tunepid_tunepid_tunepid_tune



216 Data Acquisition Runtime Library

pid_preset

Establish a pre-determined PID operating state.

int pid_preset (
PID *pid, // PID control block handle
int sysval,
int ctrlval
);

Parameters
pid

Pointer variable containing a handle for the PID control block to be adjusted.

sysval
A value specifying the feedback from the controlled system’s output.

ctrlval
A value specifying the PID control output level required as input to the system to
sustain the system output level at sysval.

Return Values
If the function succeeds, the return value is 0.

If the function fails, the return value is an non-zero error code.

Description
The function pid_presetpid_presetpid_presetpid_preset establishes a pre-determined PID operating state.

The sysval parameter specifies the feedback from the controlled system's output.
The ctrlval parameter specifies the PID control output level required as input to
the system to sustain the system output level at sysval. The gain, setpoint, and limit
settings are obtained from the PID structure specified by the pid parameter. An
internal state for the PID controller is computed and stored into the PID structure.

This function is typically used when PID control action is not applied initially, but
some other control strategy is applied, so that current input and output conditions for
the system are known.

Suppose that the sysval and ctrlval parameters correspond to steady state
operating conditions for the controlled system, and that the PID structure's setpoint



Data Acquisition Runtime Library 217

parameter is equal to sysval. Then, after successful completion of this function, the
pid_updatepid_updatepid_updatepid_update function will produce the output value ctrlval when the system
feedback value sysval is applied. In other words, the PID control is also at a steady
state, consistent with the state of the controlled system.

The PID control setpoint may also be set to a value different from the sysval
parameter. In this case, the PID operation starts at the specified state, but begins a
smooth control transient to move the system from sysval to the new setpoint
specified in the PID parameters.

This function returns the value 0 if computations are successful. It returns a nonzero
error code if an internal PID operating state cannot be computed to produce the
specified ctrlval level given the specified sysval input. The PID structure is not
updated unless the computation is successful.

There are two possible causes for unsuccessful completion and a nonzero error code.
The first is that the output limit clamp parameters prohibit the ctrlval level
specified in the call to this function. The other possibility is that the integral-
correction coefficient is zero. Unless there is an absolute guarantee that the
ctrlval parameter is within the application's limits, and the integral coefficient is
nonzero, the custom command should check the error code and report errors to the
application on the host computer.

Note: PID parameters must be established using the pid_tunepid_tunepid_tunepid_tune function before
calling pid_presetpid_presetpid_presetpid_preset. The setpoint may be separately adjusted by calling
pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint.

See Also
pid_tunepid_tunepid_tunepid_tune, pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint, pid_updatepid_updatepid_updatepid_update



218 Data Acquisition Runtime Library

pid_set_setpoint

Assign a PID setpoint.

void pid_set_setpoint (
PID *pid, // PID control block handle
int val
);

Parameters
pid

Pointer variable containing a handle for the PID control block to be examined.

val
Setpoint value for PID structure

Return Values
There is no return value.

Description
The function pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint assigns a new setpoint value val to the PID
structure identified by handle pid.

Note: This function must be called after the function pid_tunepid_tunepid_tunepid_tune is called. The
pid_tunepid_tunepid_tunepid_tune function will initialize all PID control parameters, including the setpoint.
It is not necessary to call pid_set_setpointpid_set_setpointpid_set_setpointpid_set_setpoint unless the setpoint is changed after
parameter initialization.

See Also
pid_tunepid_tunepid_tunepid_tune



Data Acquisition Runtime Library 219

pid_tune

Set PID coefficients.

int pid_tune (
PID *pid, // PID control block handle
PIDCOEF *coef // Pointer to coefficient sets
);

Parameters
pid

Pointer variable containing a handle for the PID control block to be adjusted.

coef
Pointer to the PIDCOEF structure from which control parameters are obtained.

Return Values
If the function succeeds, the return value is zero.

If the function fails, an nonzero error code is returned. The error code is one of the
following:

0 - successful installation of coefficients
2 - upper and lower output clamp values reversed
4 - the i1 integral correction multiplier is too large,

outside the range (-8192, 8191)
8 - warning, the P, I, and D terms are all zero

Description
The function pid_tunepid_tunepid_tunepid_tune installs the parameter values from the coef structure into
PID control structure pid. If any parameter values are inconsistent or out of range,
the new coefficients are not installed and a nonzero value is returned by pid_tunepid_tunepid_tunepid_tune.
A return value of zero indicates successful installation.

The coef parameter points to the PIDCOEF structure from which control parameters
are obtained. All fields in the structure have signed integer type. The fields are:



220 Data Acquisition Runtime Library

coef->setpoint - desired output of controlled system
coef->p1 - multiplier for proportional correction
coef->p2 - divisor for proportional correction
coef->i1 - multiplier for integral correction
coef->i2 - divisor for integral correction
coef->d1 - multiplier for derivative correction
coef->d2 - divisor for derivative correction
coef->clamp_lo - lower output limit
coef->clamp_hi - upper output limit

The PID control output is given by the following equations:

         p1             i1             d1
    P =  -- ,      I =  -- ,      D =  -- ,
         p2             i2             d2

    correction = P * e  +  I * int(e)  +  D * d(e) ,

             | clamp_lo      if   correction  <  clamp_lo
    output = | clamp_hi      if   correction  >  clamp_hi
             | correction    in all other cases
where

      e = input - <setpoint>
 int(e) = integral of e
   d(e) = derivative of e

The terms P, I, and D in the correction formula are specified by pairs of integer
parameters. This allows representation of fractional numbers. The denominator
terms p2, i2, and d2 can be set to a convenient arbitrary value, such as 1000, and
then the numerator values p1,i1, and d1 can be adjusted to produce the desired
control effects. The exact values of the parameters are not important, as long as the
ratios are correct. A zero in a denominator term is treated the same as a zero in the
numerator. There are some constraints on the ranges of the combined fractional
values:

-256.0  < P <  256.0
-16.0   < I <  16.0
-256.0  < D <  256.0

The sign conventions for coefficients in the PIDCOEF structure are that a positive
error term e and a positive coefficient produce a positive computed output. For most



Data Acquisition Runtime Library 221

controlled systems, this will tend to increase, not decrease, the error e. These
systems should use the negative of the value returned by pid_updatepid_updatepid_updatepid_update as the control
output.

Note: The pid_openpid_openpid_openpid_open function must be called to set up the PID structure before
pid_tunepid_tunepid_tunepid_tune function is called.

See Also
pid_openpid_openpid_openpid_open, pid_updatepid_updatepid_updatepid_update



222 Data Acquisition Runtime Library

pid_update

Compute new PID state and output.

int pid_update (pid, val)
PID *pid, // PID control block handle
int val
);

Parameters
pid

Pointer variable containing a handle for the PID control block to be adjusted.

val
Value of the sample.

Return Values
The function returns the value of the PID control output.

Description
The function pid_updatepid_updatepid_updatepid_update performs the real-time computation of PID control
output. This function is called once for each captured sample of the controlled
system's output. The value of the sample is val. The internal state of the PID
computation is maintained in the pid structure. The pid_updatepid_updatepid_updatepid_update function returns
the value of the PID control output.

Note: For many controlled systems, the negative of the value returned by
pid_updatepid_updatepid_updatepid_update should be used as the final control output. See the pid_tunepid_tunepid_tunepid_tune function
description for more information.

Note: The pid_tunepid_tunepid_tunepid_tune function must be called to establish values of the PID
parameters before the pid_updatepid_updatepid_updatepid_update function is called.

See Also
pid_tunepid_tunepid_tunepid_tune



Data Acquisition Runtime Library 223

pipe_get

Get a value from a pipe.

long int pipe_get (
PIPE *input // Pipe handle
);

Parameters
input

Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns one value from a pipe. If the pipe has int data rather than
long int data, the returned value can be cast to an int type.

Description
The function pipe_getpipe_getpipe_getpipe_get reads one value from a pipe. If the pipe is empty when
pipe_getpipe_getpipe_getpipe_get is called, the calling task goes to sleep until the pipe contains data. If this
behavior is not desired, function pipe_numpipe_numpipe_numpipe_num or pipe_num_completepipe_num_completepipe_num_completepipe_num_complete should be
used first to determine whether the pipe contains data.

See Also
pipe_numpipe_numpipe_numpipe_num, pipe_num_completepipe_num_completepipe_num_completepipe_num_complete



224 Data Acquisition Runtime Library

pipe_get_float

Get a floating point value from a pipe.

float pipe_get_float (
PIPE *input // Pipe handle
);

Parameters
input

Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns one floating point value from a pipe.

Description
The function pipe_get_floatpipe_get_floatpipe_get_floatpipe_get_float reads one floating point value from a pipe. If the
pipe is empty when pipe_get_floatpipe_get_floatpipe_get_floatpipe_get_float is called, the calling task goes to sleep until
the pipe contains data. If this behavior is not desired, function pipe_numpipe_numpipe_numpipe_num or
pipe_num_completepipe_num_completepipe_num_completepipe_num_complete should be used to determine whether the pipe contains data.

See Also
pipe_numpipe_numpipe_numpipe_num, pipe_num_completepipe_num_completepipe_num_completepipe_num_complete



Data Acquisition Runtime Library 225

pipe_num

Determine whether a pipe contains data.

unsigned int pipe_num (
PIPE *pipe // Pipe handle
);

Parameters
pipe

Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns a number indicating a lower bound for either the number of
data values in a pipe or the number of locations available for writing to a pipe.

Description
When applied to a pipe pipe which is opened as an input pipe, the routine
pipe_numpipe_numpipe_numpipe_num returns a lower bound for the number of data values in a pipe. When
applied to a pipe pipe which is opened as an output pipe, the routine pipe_numpipe_numpipe_numpipe_num
returns a lower bound on the number of locations available for writing into the pipe.

This function should be used with care, since polling a pipe for data can slow an
application. Also, there are subtle differences in performance for different types of
pipes. The behavior is regular and predictable for user-defined pipes, but can be
non-intuitive for input, output and communication pipes.

There is no guarantee of the accuracy of the number returned by this function when
used with input channel pipes. For example, function pipe_numpipe_numpipe_numpipe_num could report a
value such as 4 when, in fact, thousands of samples are available. Furthermore, the
reported value does not necessarily improve as more data are written into the pipe.
The number returned by this function should be treated as a 'Boolean' value. If it is
nonzero, the reported number of values can be fetched safely.

Similarly, there is no guarantee in the utility of the returned value for output pipes. It
is a lower bound, not an upper bound. For example, when the output pipe is an
output channel pipe being used by an active output procedure, a value of zero could
be returned. This value is meaningless; it says that there is no information about how



226 Data Acquisition Runtime Library

much space is available. It definitely does not mean that the synchronous output pipe
cannot accept data.

If an accurate count of the number of samples available to read from an input pipe is
required, the function pipe_num_completepipe_num_completepipe_num_completepipe_num_complete should be used instead.

See Also
pipe_num_completepipe_num_completepipe_num_completepipe_num_complete



Data Acquisition Runtime Library 227

pipe_num_complete

Return an accurate estimate of the number of data in a pipe.

unsigned int pipe_num_complete (
PIPE *pipe, // Pipe handle
unsigned count
);

Restrictions
The function pipe_num_completepipe_num_completepipe_num_completepipe_num_complete is available only in DAPL versions 4.21 and
higher.

Parameters
pipe

Pointer variable containing a handle for the pipe to be examined.

count
A value specifying the maximum number of samples

Return Values
The function returns an accurate estimate of the current number of samples available
in pipe pipe, up to a maximum of count samples.

Description
The function pipe_num_completepipe_num_completepipe_num_completepipe_num_complete returns an accurate estimate of the current
number of samples available in pipe pipe, up to a maximum of count samples.

Except for additional samples which may appear in the pipe between the time this
function starts and the time that it ends, the number returned by this function is
accurate. This function performs a thorough search of a pipe's data structure to
obtain this estimate. For maximum speed, the count parameter should be as small
as possible.



228 Data Acquisition Runtime Library

The function returns when the entire pipe structure has been processed or when
count values have been found. A call to pipe_num_completepipe_num_completepipe_num_completepipe_num_complete on an input channel
pipe is usually slower than a call to pipe_numpipe_numpipe_numpipe_num. For other pipe types, pipe_numpipe_numpipe_numpipe_num and
pipe_num_completepipe_num_completepipe_num_completepipe_num_complete produce equivalent results.

See Also
pipe_numpipe_numpipe_numpipe_num



Data Acquisition Runtime Library 229

pipe_open

Open a pipe.

void pipe_open (
PIPE *pipe, // Pipe handle
int mode
);

Parameters
pipe

Pointer variable containing a handle for the pipe to be opened for input or output.

mode
P_READ if the pipe is used for input and P_WRITE if the pipe is used for output.

Return Values
There is no return value.

Description
The function pipe_openpipe_openpipe_openpipe_open prepares a pipe for input or output; mode must be P_READ
if the pipe is used for input and P_WRITE if the pipe is used for output.



230 Data Acquisition Runtime Library

pipe_purge

Remove all data from a pipe.

void pipe_purge (
PIPE *pipe // Pipe handle
);

Parameters
pipe

Pointer variable containing a handle for the pipe to be examined.

Return Values
There is no return value. The function removes all data values from a pipe.

Description
The function pipe_purgepipe_purgepipe_purgepipe_purge removes all data values from a pipe. This function is not
recommended in newer applications, as it removes data for all tasks reading from the
pipe. Newer applications should use the function pipe_rempipe_rempipe_rempipe_rem to empty a pipe. For
example:

while (count = pipe_num_complete(pipe,100))
    pipe_rem (pipe, count);



Data Acquisition Runtime Library 231

pipe_put

Put a data value into a pipe.

void pipe_put (
PIPE *pipe, // Pipe handle
long int val
);

Parameters
pipe

Pointer variable containing a handle for the pipe to receive the value.

val
Value to be added to a pipe.

Return Values
There is no return value.

Description
The function pipe_putpipe_putpipe_putpipe_put adds a data value to a pipe. If the pipe is full, the task either
goes to sleep until the pipe has room, or throws out the data and returns
immediately. Whether the task goes to sleep or returns immediately is selected by
the WAIT/NOWAIT parameter when the pipe is defined in the DAPL configuration.



232 Data Acquisition Runtime Library

pipe_put_float

Put a floating point value into a pipe.

void pipe_put (
PIPE *pipe, // Pipe handle
float pval
);

Parameters
pipe

Pointer variable containing a handle for the pipe to receive the value.

fval
Floating pointer data value to be added to a pipe.

Return Values
There is no return value.

Description
The function pipe_put_floatpipe_put_floatpipe_put_floatpipe_put_float places floating point data value fval into a pipe. If
the pipe is full, the task either goes to sleep until the pipe has room, or throws out
the data and returns immediately. Whether the task goes to sleep or returns
immediately is selected by the WAIT/NOWAIT parameter when the pipe is defined in
the DAPL configuration.



Data Acquisition Runtime Library 233

pipe_rem

Remove a fixed number of data values from a pipe.

void pipe_rem (
PIPE *pipe, // Pipe handle
unsigned int num
);

Parameters
pipe

Pointer variable containing a handle for the pipe from which data is removed.

num
Number of data values to be removed from the pipe.

Return Values
There is no return value.

Description
The function pipe_rempipe_rempipe_rempipe_rem removes num data values from a pipe. If the pipe contains
less than num values, the calling task goes to sleep until all data values become
available and then have been removed.



234 Data Acquisition Runtime Library

pipe_width

Return the width of a pipe in bytes.

int pipe_width (
PIPE *pipe // Pipe handle
);

Parameters
pipe

Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns the width of a pipe in bytes.

Description
The function pipe_widthpipe_widthpipe_widthpipe_width returns the width of a pipe in bytes. The width is one for
a byte pipe, two for a word pipe, and four for a long pipe or a float pipe.



Data Acquisition Runtime Library 235

printf

Format and print a string.

int printf (
char *format_string, // Pointer to character string
... // Additional parameters
);

Parameters
format_string

ASCII character string controlling the conversions performed by printfprintfprintfprintf.

...
A varying number of optional parameters appearing after the mandatory
parameter.

Return Values
The function printfprintfprintfprintf returns the number of characters sent to output pipe $SYSOUT.

Description
The function printfprintfprintfprintf formats characters and numeric values into a string and sends
the string to the output pipe $SYSOUT. This function is identical to the Standard C
function, except that the output is sent to a DAPL pipe instead of a STDOUT stream.

The string format_string consists of printable ASCII characters controlling the
conversions performed by printfprintfprintfprintf. All ANSI Standard C conversion codes  are
supported except for long double conversions and types. Floating point types and
conversions require the FP version of the Developer's Toolkit for DAPL library.

To keep task stack requirements to a minimum, there is a limit on the length of the
final formatted string. For DAPL 2000 the limit is 132 characters, and for DAPL
version 4 it is 100. Be particularly careful not to format a very large floating point
number using the %f format conversion code.



236 Data Acquisition Runtime Library

ralloc

Dynamically allocate bulk storage.

char *ralloc (
unsigned int size
);

Parameters
size

The size, in bytes, of the storage to be allocated to a task.

Return Values
The function returns a pointer to the block of allocated storage. If insufficient
memory is available, rallocrallocrallocralloc displays an error message and the calling task is
stopped.

Description
The function rallocrallocrallocralloc allocates storage to a task and returns a pointer to this storage.
De-allocation is performed automatically when a STOP command is issued. The
storage size is guaranteed to be at least size bytes. The storage can exist in a
pooled storage segment for efficiency, so it is possible that more than size bytes
are physically addressable. However, it is essential to access only the amount of
storage allocated to avoid corrupting task and system data.



Data Acquisition Runtime Library 237

send

Send a message text to the default text output pipe.

void send (
char *str // Pointer to a character string
);

Parameters
str

Pointer to a character string

Return Values
There is no return value. The first character of str is set to '\0' before sendsendsendsend
returns; this sets str to the empty string.

Description
The function sendsendsendsend sends str to the output pipe $SYSOUT.



238 Data Acquisition Runtime Library

sprintf

Format a string.

int sprintf (
char *str, // Pointer to character string
char *format_string, // Pointer to character string
... // Additional parameters
);

Parameters
str

Pointer to a data storage character string.

format_string
ASCII characters controlling the conversions performed by sprintfsprintfsprintfsprintf.

...
A varying number of optional parameters appearing after the mandatory
parameters.

Return Values
The function sprintfsprintfsprintfsprintf returns the number of characters stored in str.

Description
The function sprintfsprintfsprintfsprintf formats characters and values into the string str. This
function is the equivalent of the Standard C sprintf function. All ANSI Standard
C conversion codes are supported except for long double conversions and types.
Floating point types and conversions regulate the FP version of the Developer's
Toolkit for DAPL library.



Data Acquisition Runtime Library 239

sscanf

Scan a string, converting recognized values and assigning them to variables.

int sscanf (
char *str, // Pointer to character string
char *format_string, // Pointer to character string
... // Additional parameters
);

Parameters
str

Pointer to a character string.

format_string
Printable ASCII characters controlling the conversions performed by sscanfsscanfsscanfsscanf.

...
A varying number of pointer parameters appearing after the mandatory
parameters.

Return Values
The function returns the number of items matched and assigned.

Description
The function sscanfsscanfsscanfsscanf scans text string str under control of format_string,
converting values which it recognizes, and assigning them to variables using
pointers provided by a varying-length parameter list. This function is compliant with
the Standard C version of the sscanf function, except that the long double
conversion codes and long double pointer types are not supported. Floating point
types and conversions require the FP version of the Developer's Toolkit for DAPL
library.

Note: This function is dangerous, as are all implementations conforming to the C
Language standard. Be very careful that the data types correspond exactly to the
types implied by the conversion codes in the format string. Also verify that each
conversion code has a corresponding pointer in the varying portion of the parameter
list.



240 Data Acquisition Runtime Library

sys_exec_command

Send a DAPL command to the DAPL system command interpreter.

void sys_exec_command (
char * command // Pointer to a character string
);

Restrictions
For DAPL version 4, this function is only available with release 4.10 and higher.

Parameters
command

A pointer to a DAPL command text in a character string. The string must be a
null terminated ASCII string containing no control characters. Multiple
commands are not allowed in the string.

Return Values
There is no return value. Errors might be diagnosed by the command interpreter.

Description
The function sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command sends a DAPL command string to the DAPL
command interpreter. DAPL will interpret a command sent by sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command
when there are no other commands pending in the default text input pipe. For
example, suppose a downloaded DAPL file specifies several processing procedures
and a sequence of START, PAUSE, and STOP commands to run those procedures.
Then, no sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command messages sent by custom commands are executed
until the last operation specified in the downloaded DAPL file is completed.



Data Acquisition Runtime Library 241

sys_get_info

Return DAPL system information.

long int sys_get_info (
int info_code
);

Parameters
info_code

A value representing the request code for system information.

Return Values
The function returns DAPL system information selected by the request code
parameter in a long representation.

Description
The function sys_get_infosys_get_infosys_get_infosys_get_info returns DAPL system information. The return
information is selected by the request code parameter. The information contained in
the value returned by sys_get_infosys_get_infosys_get_infosys_get_info may be a word constant, a long constant, or a
far pointer. The return value should be cast to the appropriate data type. The
following table summarizes the request codes and return types:



242 Data Acquisition Runtime Library

Request Code Return Type

GI_DECIMAL int
GI_TERMINAL int
GI_OVERQ int
GI_IBIPOLAR int
GI_OBIPOLAR int
GI_OPTIMIZE int
GI_FLOAT_ERROR int
GI_ROUNDING int
GI_AINEXPAND int
GI_IN_ACTIVE int
GI_OUT_ACTIVE int
GI_IN_CNT unsigned long int
GI_OUT_CNT unsigned long int
GI_ICHAN_CNT int
GI_DEFAULT_BUF_SIZE int
GI_SYSOUT PIPE *
GI_SYSIN PIPE *
GI_HMEMAVL unsigned int
GI_HMEMSIZE unsigned int
GI_TMEMAVL unsigned long int
GI_TMEMSIZE unsigned long int
GI_SERIAL unsigned int
GI_OEM_ID int
GI_FFTSIZE int
GI_IBURST_ACTIVE int
GI_OBURST_ACTIVE int
GI_BUFFERING int
GI_SCHEDULE_MODE int
GI_QUANTUM int

The GI_OPTIMIZE request code is used only in DAPL version 4. It is replaced by
GI_BUFFERING in DAPL 2000. The GI_FLOAT_ERROR, GI_ROUNDING and
GI_INEXPAND codes are available in DAPL 2000 and in DAPL version 4.3 or
higher. Task scheduling request codes GI_SCHEDULE_MODE and GI_QUANTUM are
available only  in DAPL 2000. The GI_FFTSIZE, GI_IBURST_ACTIVE,
GI_OBURST_ACTIVE codes are available only in DAPL 2000.

The following request codes return the value of the corresponding DAPL options:
GI_DECIMAL, GI_TERMINAL, GI_OVERQ, GI_IBIPOLAR, GI_OBIPOLAR,
GI_IN_ACTIVE, GI_OUT_ACTIVE, GI_FLOAT_ERROR, GI_ROUNDING,
GI_AINEXPAND, GI_IBURST_ACTIVE, GI_OBURST_ACTIVE, and
GI_OPTIMIZE. These return a nonzero value if ON, a zero value if OFF.



Data Acquisition Runtime Library 243

The GI_IN_ACTIVE and GI_OUT_ACTIVE request codes indicate whether an input
or an output procedure currently is started. GI_IN_ACTIVE and GI_OUT_ACTIVE
do not indicate whether the procedure is currently capturing or updating samples
when operating in burst mode. That information can be obtained using the
GI_IBURST_ACTIVE and GI_OBURST_ACTIVE request codes.

The GI_IN_CNT and GI_OUT_CNT request codes return the current sample count of
an active input procedure and the current output count of an active output procedure.
The sample count is undefined when no input procedure is active. The output count
is undefined when no output procedure is active.

The GI_ICHAN_CNT request code returns the number of channels in the currently
active input procedure. A returned value of zero indicates that no input procedure is
active.

The GI_DEFAULT_BUF_SIZE request code returns a suggested number of data
elements for PBUF storage. This number is used by built-in DAPL processing
commands, and is a good choice for custom commands which accept buffered data
from other processing commands, or which write buffered data to other processing
commands.

The GI_SYSOUT and GI_SYSIN request codes return pointers to DAPL system
pipes, $SYSOUT and $SYSIN.

The GI_HMEMAVL and GI_HMEMSIZE requests codes return the size of available
system heap storage, in bytes, and the total size of the system heap area, in bytes.
The GI_TMEMAVL and GI_TMEMSIZE request codes return the size of available
system memory, in bytes, and the total size of the system memory area, in bytes. The
system memory area includes both the heap storage area and the data buffer areas.
GI_HMEMAVL, GI_HMEMSIZE, GI_TMEMAVL and GI_TMEMSIZE are available only
on DAPL version 4.2 or higher.

The GI_SERIAL request code returns the serial number of the Data Acquisition
Processor. The GI_OEM_ID returns the optional OEM code number for the DAPL
configuration. GI_OEM_ID is available only on DAPL version 4.2 or higher.

The GI_FFTSIZE code is available only with DAPL 2000. It reports the current size
limit on an FFT. Use the DAPL command OPTION FFTSIZE to adjust the limit. In
most cases it is best to adjust OPTION FFTSIZE when downloading rather than
when running the custom command.

DAPL 2000 provides the GI_SCHEDULE_MODE and GI_QUANTUM options. A
GI_QUANTUM request returns a number indicating the length of the task scheduling
quantum in microseconds. The GI_SCHEDULE_MODE request returns one of the
codes eSchedFixed or eSchedAdaptive. The special codes are defined in the file
CDAPCC.H.



244 Data Acquisition Runtime Library

Note: The file CDAPCC.H may contain other request codes -- these are reserved for
future expansion or backward compatibility.



Data Acquisition Runtime Library 245

sys_get_time

Return the elapsed time since the Data Acquisition Processor was powered on.

unsigned long int sys_get_time (
);

Parameters
This function requires no parameters.

Return Values
The function sys_get_timesys_get_timesys_get_timesys_get_time returns the number of milliseconds since the Data
Acquisition Processor was powered on.

Description

The function sys_get_timesys_get_timesys_get_timesys_get_time reports the elapsed time in milliseconds since power-up
of the Data Acquisition Processor. This elapsed time is derived from the hardware
CPU clock and provides good long-term accuracy. Because of the 32-bit
representation, the timing interval wraps back to 0 in approximately 50 days. See the
Data Acquisition Processor Hardware manual for information about clock accuracy.

Note: DAP 2400 applications should count acquisition samples generated by input
procedure sampling rather than using this function.



246 Data Acquisition Runtime Library

sys_get_version

Return the software and hardware version numbers of the Data Acquisition Processor.

void sys_get_version (
int *software, // Pointer to integer
int *hardware, // Pointer to integer
int *rev // Pointer to integer
);

Parameters
software

Pointer to an integer for storing the software version of DAPL.

hardware
Pointer to an integer for storing a code indicating the type of Data Acquisition
Processor.

rev
Pointer to an integer for storing a code indicating the hardware revision level for
the Data Acquisition Processor

Return Values
Return values are placed into integer variables specified by the three pointer
parameters, software, hardware, and rev. The number returned in the software
variable represents the software version of DAPL. A value of 400 represents DAPL
4.00, etc. Symbols for the Data Acquisition Processor hardware types are provided
in the CDAPCC.H header file. Hardware revisions are numbered sequentially, 1, 2,
etc.

Description
The function returns the software and hardware version numbers of the Data
Acquisition Processor.



Data Acquisition Runtime Library 247

sys_set_multitasking

Turn multitasking on or off.

void sys_set_multitasking(
int mode
);

Parameters
mode

A value specifying the multitasking mode.

Return Values
There is no return value.

Description
The function sys_set_multitaskingsys_set_multitaskingsys_set_multitaskingsys_set_multitasking gives the custom command direct control
of DAPL multitasking operation.

eMultiOn enables multitasking operation
eMultiOff disables multitasking operation
eMultiOffSYSIN disables multitasking operation until DAPL receives another

direct command

Termination of the custom command task automatically restarts normal DAPL
multitasking operation.

This command should only be used by specialized custom command applications
requiring a minimum real-time response latency.

Note: Special input procedures configurations are necessary when using this
function. See Chapter 10 for complete information on the advantages and hazards of
using this function.



248 Data Acquisition Runtime Library

task_pause

Pause a task for a specified time.

void task_pause (
int ms
);

Parameters
ms

A value that represents the time in milliseconds that task execution is suspended.

Return Values
There is no return value.

Description
The function task_pausetask_pausetask_pausetask_pause suspends execution of a task for ms milliseconds. After
this time has elapsed, the Data Acquisition Processor continues execution of the task
at the statement following the function task_pausetask_pausetask_pausetask_pause.

Note: As a result of the multitasking in the Data Acquisition Processor, there can be
several milliseconds of additional delay before a task continues after a call to
task_pausetask_pausetask_pausetask_pause.

See Also
sys_get_timesys_get_timesys_get_timesys_get_time



Data Acquisition Runtime Library 249

task_switch

Temporarily suspend the task to allow other tasks to use the CPU.

void task_switch (
);

Parameters
This function requires no parameters.

Return Values
There is no return value.

Description
The function task_switchtask_switchtask_switchtask_switch temporarily suspends the task and allows other tasks to
use the CPU. Execution resumes after some delay, at the next statement after the
task_switchtask_switchtask_switchtask_switch function. This function is typically used to improve real-time
response. Most tasks can simply wait for data to arrive, and do not need to use this
function to release the CPU.



250 Data Acquisition Runtime Library

trigger_get

Extract and return the next available trigger assertion.

unsigned long int  trigger_get (
TRIGGER *trig // Trigger handle
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

Return Values
The function returns the next available assertion from trigger trig.

Description
Function trigger_gettrigger_gettrigger_gettrigger_get extracts a trigger event from a trigger. Function
trigger_gettrigger_gettrigger_gettrigger_get does not return until the requested assertion is available, and this can
block execution of the calling task, leading to backlog conditions. In most situations,
the trigger_waittrigger_waittrigger_waittrigger_wait or trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate functions should be used
instead. However, trigger_gettrigger_gettrigger_gettrigger_get can be called safely after using the trigger_numtrigger_numtrigger_numtrigger_num
function to verify that a trigger assertion is available, or when backlog situations
cannot occur.

The use of this function is demonstrated in the TSTAMP2.C custom command
example.

See Also
trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate, trigger_waittrigger_waittrigger_waittrigger_wait, trigger_numtrigger_numtrigger_numtrigger_num



Data Acquisition Runtime Library 251

trigger_get_immediate

Return the next available assertion or task immediately.

unsigned long int  trigger_get_immediate (
TRIGGER *trig, // Trigger handle
int *flag // Pointer to integer variable
);

Parameters
trig

Pointer variable containing a handle for the trigger to be examined.

flag
A pointer to an integer variable.

Return Values
The function fetches the next available trigger assertion, or if an assertion is not
available, returns the status of the writer for the trigger. The contents of the integer
variable indicated by pointer flag are set:

• flag is zero (logical false) if no assertion is present in the trigger structure and a
status report is returned,

• flag is nonzero (logical true) if an assertion is returned.

Description
The function trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate fetches the next available assertion event
from the specified trigger, or if an assertion is not available, returns the status of the
writer for this trigger. Whether the returned value is an assertion or status number is
indicated by the contents of the integer variable indicated by pointer flag.

Unlike the trigger_gettrigger_gettrigger_gettrigger_get or trigger_waittrigger_waittrigger_waittrigger_wait functions, which will cause the task to
wait until a trigger assertion occurs, the trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate function avoids
suspending the calling task.



252 Data Acquisition Runtime Library

Function trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate allows a trigger reading task to determine the
state of the trigger writer task. If a status number is returned, the returned value
specifies a sample number up to which it is guaranteed that no assertion occurs.

Use of this function is demonstrated in the TSTAMP2.C and HOLDOFF.C custom
command examples.

See Also
trigger_numtrigger_numtrigger_numtrigger_num, trigger_get_statustrigger_get_statustrigger_get_statustrigger_get_status, trigger_gettrigger_gettrigger_gettrigger_get, trigger_waittrigger_waittrigger_waittrigger_wait



Data Acquisition Runtime Library 253

trigger_get_opmode

Return a trigger’s operating mode.

unsigned int  trigger_get_opmode (
TRIGGER *trig // Trigger handle
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

Return Values
The trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode function returns one of the following integer codes
indicating the operating mode of trigger trig.

TRIG_NATIVE_MODE
TRIG_MANUAL_MODE
TRIG_AUTO_MODE
TRIG_NORMAL_MODE
TRIG_DEFERRED_MODE

These codes are defined by the CDAPCC.H file.

Description
The function trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode examines the operating mode defined for
trigger trig in the DAPL configuration. The mode can be examined but not
changed. For example, a custom command could be intended for single-event
processing, and should only be used in a configuration with a trigger in
TRIG_MANUAL_MODE. The trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode function allows the custom
command to verify the trigger configuration.

See Also
trigger_get_propertytrigger_get_propertytrigger_get_propertytrigger_get_property



254 Data Acquisition Runtime Library

trigger_get_property

Return a trigger’s property value.

unsigned long int  trigger_get_property (
TRIGGER *trig, // Trigger handle
unsigned int prop
);

Parameters
trig

Pointer variable containing a handle for the trigger to be examined.

prop
A code selecting a trigger property.

Return Values
The function returns the current value of a specified trigger property prop for
trigger trig.

Description
The function trigger_get_propertytrigger_get_propertytrigger_get_propertytrigger_get_property returns a trigger’s property value. The
property prop is an integer number from the following list, defined in the
CDAPCC.H file.

TRIG_HOLDOFF_PROPERTY
TRIG_CYCLE_PROPERTY
TRIG_STARTUP_PROPERTY
TRIG_GATE_PROPERTY

The returned numbers are the holdoff interval length, the auto-mode cycle length,
startup interval length, or the GATE arming, respectively. HOLDOFF, CYCLE, and
STARTUP intervals return unsigned long integer values. The GATE property is ARMED
if the returned value is nonzero, or DISARMED if the value is zero. Only the GATE
property can change after the trigger is defined.

Note: A custom command cannot directly change a trigger’s GATE property. The
property can be changed indirectly by sending a number to a TRIGARM task through



Data Acquisition Runtime Library 255

a pipe, or by sending an EDIT command to the DAPL system using the function
sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command.

See Also
trigger_get_opmodetrigger_get_opmodetrigger_get_opmodetrigger_get_opmode, sys_exec_commandsys_exec_commandsys_exec_commandsys_exec_command



256 Data Acquisition Runtime Library

trigger_get_status

Return a trigger’s current status count.

unsigned long int  trigger_get_status (
TRIGGER *trig // Trigger handle
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

Return Values
The function returns the current status count for the calling task.

Description
The function trigger_get_statustrigger_get_statustrigger_get_statustrigger_get_status gets a trigger’s current status count. The
status is different for each task accessing the trigger. The writer status describes the
progress of the writer task scanning its data pipe for triggering. A reader status
describes the progress of the reader task as it takes or discards samples from its data
pipe.

Using this function, it is not necessary for the custom command to maintain a
separate status count variable. This information can be obtained from the trigger as
needed.

Note: The status information returned by the trigger_get_statustrigger_get_statustrigger_get_statustrigger_get_status function is
different from the status information returned by the trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate
function, which reports information about the progress of the trigger writer task to a
trigger reader task.

See Also
trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate



Data Acquisition Runtime Library 257

trigger_num

Determine if an assertion is present.

unsigned int trigger_num (
TRIGGER *trig // Trigger handle
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

Return Values
For a trigger reader task, the function returns a nonzero number of assertions if an
assertion is available in the trigger, or a zero value if no assertion is present. For a
writer task, trigger_numtrigger_numtrigger_numtrigger_num reports the number of locations available for storing
additional assertions in the trigger structure.

Description
The function trigger_numtrigger_numtrigger_numtrigger_num operates in the manner of the pipe_numpipe_numpipe_numpipe_num function,
except it tests trigger trig rather than a data pipe.

See Also
trigger_get_immediatetrigger_get_immediatetrigger_get_immediatetrigger_get_immediate, pipe_numpipe_numpipe_numpipe_num



258 Data Acquisition Runtime Library

trigger_open

Initialize a trigger.

void trigger_open (
TRIGGER *trig, // Trigger handle
int mode
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

mode
The parameter mode must be P_WRITE to open the trigger for signaling
assertions, or P_READ to open the trigger for receiving assertions.

Return Values
There is no return value.

Description
The function trigger_opentrigger_opentrigger_opentrigger_open initializes trigger trig. All tasks which use a trigger
must call this function prior to calling other triggering functions.



Data Acquisition Runtime Library 259

trigger_put

Place an assertion into a trigger.

void trigger_put (
TRIGGER *trig, // Trigger handle
unsigned long int sc
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

sc
A value representing the sample number.

Return Values
There is no return value.

Description
The function trigger_puttrigger_puttrigger_puttrigger_put generates a trigger assertion, writing sample number sc
into trigger trig. The name trigger_assert is an alias for the function
trigger_puttrigger_puttrigger_puttrigger_put. The status of the trigger is updated automatically to be consistent
with the asserted sample number.

The use of this function is demonstrated in the  WATCHDOG.C custom command
example.

Note: The sequence of sample numbers written to the trigger must be a strictly
increasing sequence.



260 Data Acquisition Runtime Library

trigger_set_status

Set a trigger’s status field.

void trigger_set_status (
TRIGGER *trig, // Trigger handle
unsigned long int sc
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

sc
A value representing the sample number.

Return Values
There is no return value.

Description
The function trigger_set_statustrigger_set_statustrigger_set_statustrigger_set_status is used to set the status number of trigger
trig to specified value sc. This informs the DAPL system that any samples or
events with a lesser or equal sample number are no longer needed by this task. This
function is useful for triggering commands which generate events at predetermined
times, for example, automatic sweep generation. It is also useful for commands
which copy status information from one trigger to another.

In most applications, it is safer and easier to compute an incremental change and
apply the trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status function instead.

Use of the trigger_set_statustrigger_set_statustrigger_set_statustrigger_set_status function is demonstrated in the  TSTAMP2.C
custom command example.



Data Acquisition Runtime Library 261

Note: It is essential for every trigger signaling or receiving task to keep the status of
the trigger structure current with the number of the sample most recently processed.
Samples are numbered starting with sample 0. The function trigger_set_statustrigger_set_statustrigger_set_statustrigger_set_status
always must set the trigger status to a value which is greater than or equal to the
previous trigger status.

See Also
trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status



262 Data Acquisition Runtime Library

trigger_updt_put

Increment the trigger’s status and assert the trigger at the new value.

void trigger_updt_put (
TRIGGER * trig, // Trigger handle
unsigned long int incr
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

incr
The number of samples.

Return Values
There is no return value.

Description
The function trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put is a combination of a trigger status adjustment
followed by an assertion at the new sample number. First, trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put
computes a new status, adding incr samples to the old status number field. Then, it
signals a new event by placing this sample number into trigger trig.

The same effect can be achieved by fetching the value of the trigger status, adding
incr to that number, and then calling trigger_puttrigger_puttrigger_puttrigger_put to assert the trigger event and
update the status.

This function is particularly useful when data samples are processed in blocks.
While scanning a data stream, if an event is detected at the Nth sample in the block,
call the trigger_updt_puttrigger_updt_puttrigger_updt_puttrigger_updt_put function:

trigger_updt_put(trig,N);



Data Acquisition Runtime Library 263

Otherwise, call the trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status function:

trigger_updt_status(trig,N);

See Also
trigger_puttrigger_puttrigger_puttrigger_put, trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status



264 Data Acquisition Runtime Library

trigger_updt_status

Increment a trigger’s status field.

void trigger_updt_status (
TRIGGER * trig, // Trigger handle
unsigned long int incr
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

incr
The number of samples to increment the trigger trig status.

Return Values
There is no return value.

Description
The function trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status increments the status number field of trigger
trig  by incr samples. This informs the DAPL system that any events or data
corresponding to these samples are no longer needed.

This function is particularly useful when data samples are processed individually.
Call trigger_updt_statustrigger_updt_statustrigger_updt_statustrigger_updt_status to adjust the status count by one after each sample is
processed.

Note: It is essential for every trigger signaling or receiving task to keep the status of
the trigger structure current with the number of the sample most recently processed.
Samples are numbered starting with sample 0. When processing blocks of data,
beware of using this function in combination with the trigger_puttrigger_puttrigger_puttrigger_put function,
which also adjusts the trigger status count.

See Also
trigger_puttrigger_puttrigger_puttrigger_put



Data Acquisition Runtime Library 265

trigger_wait

Extract and return the value of a trigger assertion when it becomes available.
Automatically discard unneeded data.

unsigned long int trigger_wait (
TRIGGER *trig, // Trigger handle
PIPE *pipe, // Pipe handle
unsigned long int pre_count,
int mult
);

Parameters
trig

Pointer variable containing a handle for the trigger to be accessed.

pipe
A pipe containing data samples to be processed.

pre_count
The number of pre-trigger samples

mult
A trigger rate correction. Most applications set mult equal to one. mult can be
set to some other value N to locate a group of N samples in a multiplexed data
set, in the manner that the WAIT command provided by the DAPL operating
system processes multiplexed input channel list data.

Return Values
The function returns the value of an assertion from trigger trig.

Description
The function trigger_waittrigger_waittrigger_waittrigger_wait extracts and returns the value of an assertion from
trigger trig . The function is used by trigger reader tasks that respond to trigger
events by taking a data block from the pipe data stream.

While waiting for a trigger assertion to appear in trigger trig, function
trigger_waittrigger_waittrigger_waittrigger_wait automatically removes unneeded data from pipe pipe, and updates
the trigger status to account for the samples removed.



266 Data Acquisition Runtime Library

When function trigger_waittrigger_waittrigger_waittrigger_wait returns, pipe pipe contains data beginning
pre_count samples before the trigger assertion. The calling task can use
pipe_getpipe_getpipe_getpipe_get or pbuf_getpbuf_getpbuf_getpbuf_get to fetch the data associated with the signaled event.

See Also
pipe_getpipe_getpipe_getpipe_get, pbuf_getpbuf_getpbuf_getpbuf_get



Data Acquisition Runtime Library 267

var32_get

Return the value of a long DAPL variable.

long int var32_get (
LVAR *var // Pointer to long variable
);

Parameters
var

Pointer variable containing a handle for the variable to be examined.

Return Values
The function returns the 32-bit value of a DAPL long variable.

Description
The function var32_getvar32_getvar32_getvar32_get is required only for advanced applications that use DAPL
long variables for communication between several tasks.

This function is equivalent to the C operator ‘*v.’ The high order and low order 16-
bit words of var are fetched in an atomic manner that avoids task preemption during
the fetch operation.

See Also
var32_setvar32_setvar32_setvar32_set



268 Data Acquisition Runtime Library

var32_set

Assign a value to a long DAPL variable.

long int var32_set (
LVAR *var, // Pointer to long variable
long int value
);

Parameters
var

Pointer variable containing a handle for the variable to be examined.

value
32-bit value to be assigned to a DAPL long variable

Return Values
The function returns the new contents of the variable var.

Description
The function var32_setvar32_setvar32_setvar32_set is required only for advanced applications that use DAPL
long variables for communication between several tasks.

The function var32_setvar32_setvar32_setvar32_set assigns a 32-bit value to a DAPL long variable. This
function is equivalent to the C statement:

*v = value;

The high order and low order 16-bit words of var are assigned in an atomic manner
that avoids task preemption during the assignment operation.

See Also
var32_getvar32_getvar32_getvar32_get



Data Acquisition Runtime Library 269

vector_length

Determine the length of a DAPL vector.

unsigned int vector_length (
VECTOR *vect // Vector handle
);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns the number of elements in a DAPL vector.

Description
The function vector_lengthvector_lengthvector_lengthvector_length is useful for determining an index bound for
accessing items in a DAPL vector.

See Also
vector_widthvector_widthvector_widthvector_width, vector_startvector_startvector_startvector_start



270 Data Acquisition Runtime Library

vector_start

Return a pointer to the first element in a DAPL vector.

void *vector_start (
VECTOR *vect // Vector handle
);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns a pointer to the first element in a DAPL vector.

Description
The routine vector_startvector_startvector_startvector_start returns a pointer to the first element in a DAPL vector.
The returned pointer must be cast to the appropriate data type before attempting to
access the vector data.

See Also
vector_lengthvector_lengthvector_lengthvector_length



Data Acquisition Runtime Library 271

vector_type

Return the type of data contained by a DAPL vector.

unsigned long vector_type (
VECTOR *vect // Vector handle
);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns a code which indicates they type of data contained by the
vector. This returned code is one of the codes used to specify a vector data type
during parameter processing.

Description
The routine vector_typevector_typevector_typevector_type accepts a handle to a DAPL vector of any data type, and
returns a code indicating the type of data contained by the vector.

See Also
param_processparam_processparam_processparam_process



272 Data Acquisition Runtime Library

vector_width

Return the size in bytes of one data element in a DAPL vector.

unsigned int vector_width (
VECTOR *vect // Vector handle
);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns the size in bytes of one data element in the vector.

Description
The function vector_widthvector_widthvector_widthvector_width reports the number of bytes for one element of a
DAPL vector storage array, in the manner that a C sizeof operator would report
the size of a variable or struct. This is useful for determining storage utilization
directly, rather than deriving storage size from task parameter information.

See Also
vector_lengthvector_lengthvector_lengthvector_length, vector_typevector_typevector_typevector_type



Error Messages 273

15. Error Messages

This chapter contains a list of error messages that may be generated during
compilation, linking, conversion, downloading, or execution of custom commands.
The compilation, linking, and conversion steps are controlled by the batch files
MCC4.BAT, BCC4.BAT, MCC16.BAT, or BCC16.BAT. Downloading is performed by
DAPview, COMLOAD, or a user-supplied program. The Data Acquisition Processor
begins execution of a task when a START command is issued.

This is not a comprehensive listing of all possible error message that you might see
when developing a new custom command. These are error conditions that indicate
problems special to the DAPL or DAPL 2000 operating environment.

Compilation Messages

Warning: Address of frame variable taken
    DS != SS

This message is issued by the C compiler if the address of a local variable is passed to
a function which requires a near pointer. This will result in incorrect execution since
the compiler makes incorrect segment register assumptions. The solution is to use a
parameter list pointer which is "far." Since the compilation batch files specify the
compact memory model (with far data pointers), conversion to a valid far pointer is
automatic, provided that function prototypes are used.

Linking Messages

Unresolved
externals: xxxxxx in file yyyyyy

The linker issues this message if it cannot find an external routine. If the external
routine is a Microstar Laboratories system routine or compiler runtime library routine,
verify that the spelling of the routine name is correct, including underscores and
capitalization. If the function is not listed in Chapter 14, it is not available to a custom
command.

Symbol defined more that once: xxxxxx

Not all compiler runtime library routines are compatible with the Data Acquisition
Processor environment. Incompatible routines generally require DOS services, such as



274 Error Messages

file or screen input/output. If a custom command attempts to use incompatible
routines, the linker tries to include DOS-only versions of several Developer's Toolkit
for DAPL system routines. This results in duplicate symbol errors. See Chapter 14 for
information about compatible library routines.

This message can also occur when floating point operations are used without
specifying the FP library on the batch file command lines when compiling.

Undefined symbol
N_FTOL@

This error message can occur if floating point operations are used without specifying
the FP library on the batch file command line when compiling.

Error: '_fpsp': unresolved external

A custom was command compiled with the alternate math library provided with the
compiler. The 8087 inline math library is required. This error message will normally
not be seen unless the batch file for compiling custom commands has been altered in
such a way that the wrong library type is used.

Error: '__CIxxxxx': unresolved external

The use of the Oi compiler option to enable code generation of floating point
intrinsics is not supported.

Conversion Messages

Could not convert - relocation required

C variables which are defined globally must be preceded by the static keyword. In
addition, custom commands require special relocation which places some constraints
on the use of initialized static variables. See Chapter 12.

Downloading Messages

Error: command transfer failed
Error: could not open command list file
Error: syntax error in command list file

These messages are issued by DAPview or COMLOAD if the custom command(s)
could not be downloaded to the Data Acquisition Processor. See the Error Message
chapter of the Systems Manual for more information about downloading errors.



Error Messages 275

Execution Messages

<task>: out of
heap memory

Both DAPL version 4 and DAPL 2000 must allocate space for custom command tasks
from a memory segment limited to 64 Kbytes If there are too many tasks which are
defined by custom commands, or if each instance uses too much stack memory, this
error can occur. For DAPL version 4, static data memory is also allocated from the
same 64 Kbyte segment, which further limits the number of custom command tasks
which can run at one time.

<task>: too many
parameters
<task>: too few parameters
<task>: 'xxxx' should not be a 'yyyy'

These messages are issued by the function param_processparam_processparam_processparam_process if a parameter list
incompatibility is detected.

<task>: stack overflow

This message is issued if a task’s stack usage exceeds its stack allocation at any time
while the custom command is running.

Division by zero error

A task attempted to perform integer division by zero.

Error: Illegal library function invocation

A task invoked an unsupported Microstar Laboratories library function. This error can
occur when using a very old custom command binary file with DAPL version 4. The
old custom command code uses hardware-specific system functions which are no
longer supported.





Appendix A. Compatibility with Previous Versions 277

16. Appendix A. Compatibility with Previous
Versions

The Developer's Toolkit for DAPL was previously named the Advanced Development
Toolkit. This appendix explains compatibility issues between the Advanced
Development Toolkit versions 1-3 and the Developer's Toolkit for DAPL version 4.0.

In this chapter and throughout this document, the Advanced Development Toolkit is
referenced as a “previous version of the Developer's Toolkit for DAPL.”

Binary Code Compatibility

The Developer's Toolkit for DAPL versions 1 through 3 and the DAPL operating
system versions 3 and 4 maintained a very high degree of backward source code and
binary code compatibility. With very few exceptions, binary code modules generated
with any Developer's Toolkit for DAPL release ran correctly on any Data Acquisition
Processor model using any DAPL operating system release. Compatibility among
hardware and software versions depended to a great degree on binary code
compatibility in the Intel 80x86 processor family.

This compatibility has a price. The price becomes larger as processors become more
powerful. New 32-bit processor and system features are not always compatible with
old binary code intended for 8-bit and 16-bit systems. Newer processors are optimized
for a large 32-bit address space, but for full backward compatibility, it is necessary to
use the older and less efficient “real mode” scheme with multiple, overlapping 64K,
16-bit address spaces. For example, some functions provide access to elements of the
DAPL system data through pointers. This works well if the pointer uses an offset that
is representable in 16 bits. If the offset is larger, such a pointer is not representable
and therefore not usable by a 16-bit custom command.

Another subtle problem is alignment. There is a surprising loss of speed when 32-bit
processors operate upon data that is not aligned to 32-bit data boundaries. Some of the
older Developer's Toolkit for DAPL implementations force other data alignments,
causing significant impacts on all parts of DAPL system operation.

Taken individually, the problems are small, but taken all together, the constraints are
very significant. For this reason, starting with release 4.0 of Developer's Toolkit for
DAPL, backward binary code compatibility is not maintained. Commands compiled
for DAPL version 4 will not run under DAPL 2000, and commands compiled for



278 Appendix A. Compatibility with Previous Versions

DAPL 2000 will not run under DAPL 4. For the most part, however, custom
command source code is compatible. An existing custom command can be recompiled
using the Developer's Toolkit for DAPL, with few or no source code changes, to run
on either system.

Source Code Compatibility

Many functions supported in previous version of the Developer's Toolkit for DAPL
have new names. Most of renaming is strictly for purposes of consistent notation. The
CDAPCC.H file automatically includes a backward compatibility file CDAPBACK.H,
which maps older names used in previous Developer's Toolkit for DAPL versions into
the new names. If only the current notations are used, as described in the rest of this
manual, there is no need for the backward compatibility notations, and the line
#include “CDAPBACK.H” can be removed from the CDAPCC.H file.

Custom command source code using certain special features must be modified to be
compatible with the Developer's Toolkit for DAPL.

Direct addressing of struct_pbuf is no longer supported by DAPL 2000. Access to
PBUF data and control fields must be through the pipe buffer access functions
pbuf_get_cntpbuf_get_cntpbuf_get_cntpbuf_get_cnt, puf_set_cntpuf_set_cntpuf_set_cntpuf_set_cnt, puf_get_max_cntpuf_get_max_cntpuf_get_max_cntpuf_get_max_cnt, pbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cntpbuf_set_max_cnt,
pbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cntpbuf_get_min_cnt, puf_set_min_cntpuf_set_min_cntpuf_set_min_cntpuf_set_min_cnt, pbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptrpbuf_get_data_ptr and
pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr. These functions should be used as described in Chapter 4.
The pbuf_cnt, pbuf_min_cnt, pbuf_max_cnt, and pbuf_ptr macros used in
earlier releases of the Developer's Toolkit for DAPL now expand as references to the
new functions, and will work under DAPL 2000, with one exception. Assignment may
not be made to the data pointer field by direct assignment to the pbuf_ptr macro,
and this syntax must be replaced by pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr. The macro expansions are
not as efficient as using the new functions directly, but the application will work
correctly if the old macros compile successfully.

For example, with previous versions of the Developer's Toolkit for DAPL, it was
common practice to assign a data buffer storage address using the following syntax:

pbuf_ptr( inbuf )  = user_pointer;        /* ERROR */
pbuf_ptr( outbuf ) = pbuf_ptr( inbuf );   /* ERROR */

The expressions on the left hand side are no longer valid for DAPL 2000, and will
generate a compile-time error. The pbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptrpbuf_set_data_ptr function must be used
instead, as in the following syntax:

pbuf_set_data_ptr( inbuf, user_pointer );
pbuf_set_data_ptr ( outbuf, pbuf_get_data_ptr ( inbuf ));



Appendix A. Compatibility with Previous Versions 279

The following minor differences can also affect backward source code compatibility:

1. The new Toolkit provides an explicit prototype for the main function. The compiler
may diagnose a conflicting, explicitly-declared prototype for main, or a main function
that does not have conforming type or parameters.

2. The functions dsp_donedsp_donedsp_donedsp_done, dsp_allocdsp_allocdsp_allocdsp_alloc, dsp_request_initdsp_request_initdsp_request_initdsp_request_init,
dsp_receive_resultdsp_receive_resultdsp_receive_resultdsp_receive_result, dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request,,,, and various supporting macros used
with these functions are now obsolete for all products except the DAP 2400a and
DAP 2416a. These should not be used for any new development. The old functions
deliver only a fraction of the FFT and filtering capabilities provided by supported
functions described in Chapter 7. The obsolete functions are automatically included
with the file CDAPBACK.H.

3. The typedef struct _vector is no longer supported. Access to vector data
must use the vector data access functions vector_startvector_startvector_startvector_start and vector_lengthvector_lengthvector_lengthvector_length.

4. The param_typeparam_typeparam_typeparam_type function returns a type unsigned long rather than type int.
This may cause the compiler to warn of a fixed-point type conversion if the value is
stored in an intermediate variable. The diagnostic can be eliminated by storing the
return value in an unsigned long variable rather than an int.

5. Obsolete functions wait and trigger_count are no longer supported. These
functions became obsolete in earlier releases of the Developer's Toolkit for DAPL.

6. The EXTENDED library version is not supported in this version of the Toolkit.
Commands needing floating point services should use the FP library instead. The
function gcvt, which was supported by the EXTENDED library, is no longer supported
directly by the Developer's Toolkit for DAPL. Full formatting capabilities for float
and double types are provided by the printfprintfprintfprintf function.





Appendix B: DAP 2400a/DAP 2416a DSP Support 281

17. Appendix B: DAP 2400a/DAP 2416a DSP
Support

The Developer's Toolkit for DAPL allows a DAP 2400a or DAP 2416e custom
command to send blocks of data directly to the onboard Motorola DSP 56001 digital
signal processor. The DSP 56001 performs fast Fourier transform processing and
returns processed data. Since many digital signal processing algorithms are based on
fast Fourier transforms, a DAP 2400a or DAP 2416a custom command gains powerful
signal processing capabilities. Furthermore, a custom command can schedule DSP
processing so that the 80186 processor and the DSP 56001 operate simultaneously.

A task communicates with the DSP 56001 by creating a DSP request structure. This
structure contains information about the type of DSP operation and the locations of
the DSP parameters. Many tasks can submit simultaneous DSP requests to the DAPL
operating system. A single task may even submit several DSP requests
simultaneously. DAPL schedules DSP requests on a first-come first-served basis, and
notifies each task when one of its DSP operations has been completed.

The system interface file CDAPCC.H defines the data structures and routines required
to communicate with the DSP 56001.

 A DSP request structure is created by including the file CDAPCC.H in a custom
command, and then defining and initializing the following pointer:

DSP_REQ *dsp_ptr;
dsp_ptr = dsp_alloc ();

The dsp_ptr variable is used to access fields of the DSP request structure. The
function dsp_request_initdsp_request_initdsp_request_initdsp_request_init initializes most fields of the DSP request structure.

rc = dsp_request_init (dsp_ptr, dsp_op, n, op_params,
                       data1, data2);

A nonzero return code from dsp_request_initdsp_request_initdsp_request_initdsp_request_init indicates successful parameter
initialization.



282 Appendix B: DAP 2400a/DAP 2416a DSP Support

The parameter dsp_op selects the DSP processing operation; this always is set to the
predefined constant FFT_OP . The parameter n is the size of the Fourier transform.
This parameter must be a power of two. The allowed sizes are shown in the following
table:

Transform Size
DAP Model: Minimum Maximum

DAP 2400a/4 and DAP 2416a/4 4 512
DAP 2400a/5 4 2048
DAP 2400a/6 and DAP 2416a/6 4 8192

The parameter op_params selects the type of fast Fourier transform and input/output
options. This parameter should be the bitwise “or” of one predefined constant from
each of the following columns:

FFT_FORWARD FFT_RECTANGULAR FFT_COMPONENTS
FFT_REVERSE FFT_HANNING FFT_AMPLITUDE

FFT_HAMMING FFT_POWER

Constants in the first column select a forward or reverse transform. Constants in the
second column select the type of input window (rectangular, Hanning, or Hamming).
Constants in the third column select the type of transform output (complex numbers,
amplitude, or power). The last two output options are defined for forward transforms
only. A typical value for the parameter op_params is

FFT_FORWARD | FFT_HANNING | FFT_COMPONENTS.

The final two parameters to dsp_request_initdsp_request_initdsp_request_initdsp_request_init specify two C arrays which store
the input/output data for the FFT operation. Each array must contain at least n 16-bit
locations. Before performing an FFT operation, the real components of the input data
are placed in data1 and the imaginary components of the input data are placed in
data2 . A transform of real-only data should fill data2 with zero data. The contents
of data1 and data2 are over-written during the transform operation.

After the transform operation is completed, both data1 and data2 arrays contain
output data. If the FFT output parameter is FFT_COMPONENTS, data1 and data2
contain the real and imaginary output components, respectively. An FFT of size n
generates n real and n imaginary output values. If the FFT output parameter is
FFT_AMPLITUDE , the first n/2 values of data1 contain 16-bit amplitude data. If the
FFT output parameter is FFT_POWER , 32-bit power values are returned. The first n/2
components of data1 contain the least significant 16-bits of each power value and the
first n/2 components of data2 contain the most significant 16-bits of each power
value.



Appendix B: DAP 2400a/DAP 2416a DSP Support 283

After initializing a DSP request structure, a task places input data into its two data
arrays. Then, a request is sent to the DSP 56001 by calling the function
dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request. After sending a request, a task waits until the request is
completed. The function dsp_donedsp_donedsp_donedsp_done returns a nonzero value when the request is
finished. A task may choose to pause while a request is processed, or may perform
other activities while the DSP 56001 is busy. Once a request has been completed,
dsp_receive_resultdsp_receive_resultdsp_receive_resultdsp_receive_result returns the result of the FFT processing in the data arrays.
Typical C code for processing a block of data is:

dsp_send_request (dsp_ptr);
while (!dsp_done (dsp_ptr))
    task_switch();
dsp_receive_result (dsp_ptr);

Once a request has been finished, a new request can be initiated. New data values are
placed in the data arrays and dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request is called again. The function
dsp_request_initdsp_request_initdsp_request_initdsp_request_init should be called only once, unless different FFT parameters are
desired.



284 Appendix B: DAP 2400a/DAP 2416a DSP Support

FFT Programming Examples

The following code illustrates a complete example using a fast Fourier transform from
a custom command. This custom command accepts three DAPL parameters: an input
pipe, the size of the fast Fourier transform, and an output pipe.

/* FFT2 (p1, n, p2)
* - compute 'n' point FFT transforms on the
* data in pipe 'p1' and transfer amplitude
* output data to pipe 'p2'
*/

#include <cdapcc.h>
void main (PIB **plib)
{
    void **argv;
    int argc;
    PIPE *in_pipe, *out_pipe;
    int n, I;
    PBUF *inbuf, *outbuf;
    int *y_array;
    DSP_REQ *dsp_ptr;
    argv = param_process (plib, &argc, 3, 3, T_PIPE_W,
                                   T_CONST_W, T_PIPE_W);

    /* open pipes and initialize parameters */
    in_pipe = (PIPE *) argv[1]; open_pipe (in_pipe, P_READ);
    n = *(const int *) argv[2];
    out_pipe = (PIPE *) argv[3]; open_pipe (out_pipe,
P_WRITE);

    /* allocate input and output pipe buffers */
    inbuf = open_pbuf (in_pipe, n);
    outbuf = open_pbuf (out_pipe, n/2);
    pbuf_min_cnt(inbuf) = n;
    pbuf_max_cnt(inbuf) = n;



Appendix B: DAP 2400a/DAP 2416a DSP Support 285

    /* allocate a second DSP parameter array */
    y_array = (int *) ralloc (2*n);

    /* allocate and initialize the DSP request structure */
    dsp_ptr = dsp_alloc ();
    if (!dsp_request_init (dsp_ptr, FFT_OP, n,
            FFT_FORWARD | FFT_AMPLITUDE | FFT_HANNING,
            pbuf_ptr(inbuf), y_array))
        param_error();

    while (1) {
            /* read the next block of input data */
            get_bpipe (inbuf);

            /* zero the imaginary components of the input */
            for (i=0; i<n; I++)
            y_array[i] = 0;

            /* send data to the DSP and wait */
            dsp_send_request (dsp_ptr);
            while (!dsp_done (dsp_ptr))
            task_switch();
            dsp_receive_result (dsp_ptr);

            /* copy n/2 words of amplitude data to the */
            /* output buffer */
            memcpy ( (char) pbuf_ptr(outbuf), (char)
pbuf_ptr(inbuf), n);

            /* send the amplitude data to the output pipe */
            pbuf_cnt(outbuf) = n/2;
            put_bpipe (outbuf);
    }
}



286 Appendix B: DAP 2400a/DAP 2416a DSP Support

Fast Fourier transform is the basis for many powerful signal processing algorithms.
The cepstrum of an input signal is determined by:

1. performing a forward Fourier transform of an input signal,
2. computing the logarithm of the power of each input frequency component,
3. performing an inverse Fourier transform on the logarithm data.

Cepstrum is useful for some types of mechanical vibration analysis.

The following custom command listing illustrates a cepstrum calculation using the on-
board digital signal processor of the DAP 2400a:

/*  CEPSTRUM (p1, n, window, p2)
*      - compute 'n' point cepstrum from input data
*         in pipe 'p1' and send results to output
*         pipe 'p2'
*/
#include <cdapcc.h>
#include <math.h>

void main (PIB **plib)
{
    void **argv;
    int argc;
    PIPE *in_pipe, *out_pipe;
    int i, n, window;
    PBUF *inbuf, *outbuf;
    int *y_array;
    DSP_REQ *dsp_ptr1,*dsp_ptr2;

    argv = param_process (plib, &argc, 4, 4, T_PIPE_W,
                    T_CONST_W, T_CONST_W, T_PIPE_W);

    in_pipe = (PIPE *) argv[1];
    n = *(const int *) argv[2];
    window = *(const int *) argv[3];
    out_pipe = (PIPE *) argv[4];

    open_pipe (in_pipe, P_READ);
    open_pipe (out_pipe, P_WRITE);



Appendix B: DAP 2400a/DAP 2416a DSP Support 287

    inbuf = open_pbuf (in_pipe, n);
    pbuf_min_cnt(inbuf) = n;
    outbuf = open_pbuf (out_pipe, 0);
    pbuf_ptr(outbuf) = pbuf_ptr(inbuf);
    pbuf_max_cnt(outbuf) = n;

    /* allocate an array for imaginary components */
    y_array = (int *) ralloc (2*n);

    /* initialize the window vector */
    switch (window) {
            case 0: window = FFT_RECTANGULAR;
                    break;
            case 1: window = FFT_HANNING;
                    break;
            case 2: window = FFT_HAMMING;
                    break;
            default: param_error();
    }

    /* allocate forward transform request header */
    dsp_ptr1 = dsp_alloc ();
    if (!dsp_request_init (dsp_ptr1, FFT_OP, n,
                      FFT_FORWARD | FFT_COMPONENTS | window,
                      pbuf_ptr(inbuf), y_array))
                              param_error();

    /* allocate reverse transform request header */
    dsp_ptr2 = dsp_alloc ();
    if (!dsp_request_init (dsp_ptr2, FFT_OP, n,
                      FFT_REVERSE | FFT_COMPONENTS | window,
                      pbuf_ptr(inbuf), y_array))
                              param_error();

    while (1) {
            int *x,*y;
            double scale = log(32767.0*32767.0)/32767.0;

            /* get real valued data and zero imaginary data
*/
            get_bpipe (inbuf);
            for (i=0; i<n; I++)
                    y_array[i] = 0;



288 Appendix B: DAP 2400a/DAP 2416a DSP Support

            /* perform forward transform */
            dsp_send_request (dsp_ptr1);
            while (!dsp_done (dsp_ptr1))
                    task_switch();
            dsp_receive_result (dsp_ptr1);

            /* compute the logarithm of the transform data
*/
            x = pbuf_ptr(inbuf);
            y = y_array;
            for (i=0; i<n; i++) {
                    long int power;
                    double logpower;
                    power = (long int)(*x)*(long int)(*x) +
                             (long int)(*y)*(long int)(*y);
                    if (power > 0)
                            logpower = log((double) power);
                    else
                            logpower = 0.0;
                    *x = (int) (logpower / scale);
                    *y = 0;
                    x++;
                    y++;
            }

            /* perform the inverse transform */
            dsp_send_request (dsp_ptr2);
            while (!dsp_done (dsp_ptr2))
                    task_switch();
            dsp_receive_result (dsp_ptr2);

            /* send the results to the output pipe */
            pbuf_cnt(outbuf) = n;
            put_bpipe (outbuf);
    }
}

DSP Routines for the DAP 2400a and DAP 2416a

The following Developer's Toolkit for DAPL routines are compatible with the
DAP 2400 and DAP 2400a.  The same functionality is available for DAPL 2000-
compatible products using FFT routines. See Chapter 14 for more information on FFT
routines.



Appendix B: DAP 2400a/DAP 2416a DSP Support 289

dsp_alloc

DSP_REQ *dsp_alloc ( )

The function dsp_allocdsp_allocdsp_allocdsp_alloc allocates a DSP request structure and returns a pointer to
the structure. Individual fields of the DSP request structure are initialized by the
function dsp_request_initdsp_request_initdsp_request_initdsp_request_init.



290 Appendix B: DAP 2400a/DAP 2416a DSP Support

dsp_done

int dsp_done (
DSP_REQ *dsp_req
)

The function dsp_donedsp_donedsp_donedsp_done returns a nonzero value when an active DSP request has
completed. This function should be called only after a call to the function
dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request and before a call to the function dsp_receive_resultdsp_receive_resultdsp_receive_resultdsp_receive_result.



Appendix B: DAP 2400a/DAP 2416a DSP Support 291

dsp_receive_result

void dsp_receive_result (
DSP_REQ *dsp_req
)

The function dsp_receive_resultdsp_receive_resultdsp_receive_resultdsp_receive_result returns the result of a completed DSP operation
into the data arrays defined in the DSP request structure. This function should be
called only after a call to the function dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request and only after the
function dsp_donedsp_donedsp_donedsp_done returns a nonzero value.



292 Appendix B: DAP 2400a/DAP 2416a DSP Support

dsp_request_init

int dsp_request_init (
DSP_REQ *dsp_req,
int dsp_op,
int n,
int op_params,
int *data1,
int *data2
)

The function dsp_request_initdsp_request_initdsp_request_initdsp_request_init initializes a DSP request structure.

The parameter dsp_op selects the DSP processing operation; this always is set to the
predefined constant FFT_OP. The parameter n is the size of the Fourier transform.
This parameter must be a power of two. The allowed sizes are shown in the following
table:

Transform Size
DAP Model: Minimum Maximum

DAP 2400a/4 and DAP 2416a/4 4 512
DAP 2400a/5 4 2048
DAP 2400a/6 and DAP 2416a/6 4 8192

The parameter op_params selects the type of fast Fourier transform and input/output
options. This parameter should be the bitwise "or" of one predefined constant from
each of the following columns:

FFT_FORWARD FFT_RECTANGULAR FFT_COMPONENTS
FFT_REVERSE FFT_HANNING FFT_AMPLITUDE
FFT_HAMMING FFT_POWER

Constants in the first column select a forward or reverse transform. Constants in the
second column select the type of input window (rectangular, Hanning, or Hamming).
Constants in the third column select the type of transform output (complex numbers,
amplitude, or power). The last two output options are defined for forward transforms
only.



Appendix B: DAP 2400a/DAP 2416a DSP Support 293

The final two parameters to dsp_request_initdsp_request_initdsp_request_initdsp_request_init specify two C arrays which store
the input/output data for the FFT operation. Each array must contain at least 'n' 16-bit
locations.

A nonzero return code from dsp_request_initdsp_request_initdsp_request_initdsp_request_init indicates successful parameter
initialization.



294 Appendix B: DAP 2400a/DAP 2416a DSP Support

dsp_send_request

void dsp_send_request (
DSP_REQ *dsp_req
)

The function dsp_send_requestdsp_send_requestdsp_send_requestdsp_send_request schedules a DSP operation. The function
dsp_donedsp_donedsp_donedsp_done will return a nonzero value when the DSP operation has completed.



Appendix C: Software Triggering Compatibility 295

18. Appendix C: Software Triggering Compatibility

The software triggering functions described in the main body of this document are
available with DAPL 2000 versions 1.20 or later. The software triggering functions
described in this section are backward compatible with all DAP models and operating
system releases supported by the Developer's Toolkit for DAPL version 4.00.

Commands which required backward source code compatibility and operating system
compatibility with DAPL 2000 prior to release 4.01 must use the triggering functions
described in this appendix.

Using the Old Triggering Functions

The Developer's Toolkit for DAPL provides access to triggers through a set of system
routines. A typical trigger configuration consists of one task that asserts a trigger and
one or more tasks that wait for trigger assertions. These are called the signaling task
and the receiving tasks, respectively.

The signaling task and the receiving tasks reference a pointer, called a trigger pointer,
to a trigger data structure. Each task obtains this pointer from one of the task’s
parameters. The trigger’s data structure includes a 32-bit number called a trigger
count. The trigger count is the most recent sample number that the signaling task has
processed.

If an input value corresponding to a trigger event is detected, the signaling task calls
the function trig_asserttrig_asserttrig_asserttrig_assert.

The responsibilities of the signaling task are:

• Call the function trig_open_writertrig_open_writertrig_open_writertrig_open_writer to open the trigger.
• Read data values from an input pipe, scanning for a trigger event.
• Increment the trigger count by one after each sample value is scanned. If a trigger

event is asserted, increment the trigger count after asserting the event. Updating
the trigger count is done using the following call, where variable t points to the
trigger:

trig_update_writer (t, 1);

The trigger count can be incremented by a number larger than one if the task performs
blocked pipe reads. The process is modified slightly for this case:



296 Appendix C: Software Triggering Compatibility

• Scan through the block of data samples until a trigger assertion is required.
• Update the trigger count by the number of scanned samples before the one

requiring the trigger event.
• Assert the trigger event.
• Update the trigger count by one to cover the sample associated with the assertion.

Each receiving task must obtain a pointer called a trigger handle. A trigger handle is a
pointer to the trigger’s receiving data structure. The trigger handle data structure
includes a 32-bit number called the receive count. The receive count is the most recent
sample number that the receiving task has processed.

Receiving tasks normally wait for trigger assertions and then process input pipe data
values relative to the location of the trigger event. In some cases, pipe data preceding
the location of the trigger event are needed. The number of values preceding the
trigger event is called the pretrigger count.

The responsibilities of a receiving task are:

• Call trig_open_readertrig_open_readertrig_open_readertrig_open_reader to obtain a trigger handle.
• Call trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert, specifying a pointer to an input data pipe, a

trigger pointer, a trigger handle pointer, and a pretrigger count.
• When  trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert returns, remove and process data values from

the input pipe. The minimum number of data values that must be processed is the
value of the pretrigger count. After each data value is processed, the receive count
must be incremented by one. If the trigger handle pointer is in th, the receive
count is incremented using the following call:

trig_update_reader (th, 1);

The receive count can be incremented by a number larger than one if the task
performs blocked pipe operations to fetch data. Update by one count for each sample
taken from the data pipe.

Note that receiving tasks call trig_open_readertrig_open_readertrig_open_readertrig_open_reader to initialize the trigger and return
a trigger handle, while signaling tasks call trig_open_writertrig_open_writertrig_open_writertrig_open_writer to initialize the
trigger.

As examples of the trigger routines, simplified versions of the DAPL LIMIT and WAIT
commands are listed below. LIMIT is a signaling task and WAIT is a receiving task.



Appendix C: Software Triggering Compatibility 297

The C code for LIMIT is:

/*  LIMIT2 (p1, region, t1)
*      - asserts trigger 't1' when data from pipe
*         'p1' enters 'region'
*/
#include <cdapcc.h>
void limit2 (PIPE *, int, int, int, TRIGGER *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 5, 5, T_PIPE_W,
             T_RFLAG, T_CONST_W, T_CONST_W, T_TRIGGER);
    limit2 ((PIPE *) argv[1], *(const int *) argv[2],
            *(const int *) argv[3], *(const int *) argv[4],
            (TRIGGER *) argv[5]);
}

void limit2 (PIPE *p, int rflag, int low, int high, TRIGGER
*t)
{
    long int d;
    trig_open_writer (t);
    pipe_open (p, P_READ);
    while (1)
    {
        d = pipe_get (p);
        if (rflag == R_INSIDE)
        {
            if   ((d >= low) && (d <= high))
                trig_assert (t);
        }
        else
        {
            if  ((d < low) || (d > high))
                trig_assert (t);
        }
        trig_update_writer(t, 1);
    }
}



298 Appendix C: Software Triggering Compatibility

The preceding trigger example can be modified easily to create custom commands that
detect different trigger conditions. It is necessary only to change the `if ‘ statements
that determine when trig_asserttrig_asserttrig_asserttrig_assert is called.

The C code for WAIT is:

/*  WAIT1 (p1, t1, n1, n2, p2)
*      - transfer n1+n2 data values from pipe 'p1'
*         to pipe 'p2' when a trigger assertion
*         occurs on trigger 't1'
*/
#include <cdapcc.h>
void wait1 (PIPE *, TRIGGER *, int, int, PIPE *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 5, 5, T_PIPE_W,
             T_TRIGGER, T_CONST_W, T_CONST_W, T_PIPE_W);
    wait1 ((PIPE *) argv[1], (TRIGGER *) argv[2],
          *(const int *) argv[3], *(const int *) argv[4],
          (PIPE *) argv[5]);
}



Appendix C: Software Triggering Compatibility 299

void wait1 (PIPE *in_pipe, TRIGGER *t, int pretrigger,
    int posttrigger, PIPE *out_pipe)
{
    THANDLE *th;
    long int d;
    int I;

    pipe_open (in_pipe, P_READ);
    pipe_open (out_pipe, P_WRITE);
    th = trig_open_reader (t);
    while (1)
    {
        trig_wait_for_assert (t, th, in_pipe,
          pretrigger,1);
        for (i=0; i < (pretrigger+posttrigger); I++)
        {
            d = pipe_get (in_pipe);
            pipe_put (out_pipe, d);
            trig_update_reader (th, 1);
        }
    }
}

If a receiving task needs to test for triggering events, but must perform other duties
while waiting for a trigger event to arrive, the task may call the function
trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion instead of trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert. The function
trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion returns immediately, reporting whether it succeeded or failed
to receive a new trigger assertion. A zero return value indicates that no trigger events
are awaiting. In this case, the function also reports the current trigger count of the
signaling task, so that the processing task can track progress of the signaling task
when necessary. A nonzero return value indicates that one or more assertion events
are posted and available for processing. In this case, the function also removes the
first posted assertion from the trigger and reports the sample count for that event.



300 Appendix C: Software Triggering Compatibility

If a receiving task calls trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion, its responsibilities are:

• Call trig_open_readertrig_open_readertrig_open_readertrig_open_reader to obtain a trigger handle.
• Call trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion, specifying a trigger pointer, a trigger handle pointer,

and a count variable.
• Examine the return value of trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion to determine whether an

assertion has occurred. Use the value returned in the count variable for processing.
• Increment the trigger receive count based on the value returned in count:

trig_update_reader (th,
    count - trig_get_reader_cnt(th));

The following custom command waits for trigger assertions and prints the sample
count of each assertion. This custom command is a combination of the DAPL TSTAMP
and FORMAT commands.

/*  TSTAMP2 (t)
*      - prints the assertion count of all assertions
*         that occur on trigger 't'
*/
#include <cdapcc.h>
void tstamp_print (TRIGGER *);

void main (PIB **plib)
{
    void **argv;
    int argc;
    argv = param_process (plib, &argc, 1, 1, T_TRIGGER);
    tstamp_print ((TRIGGER *) argv[1]);
}

void tstamp_print (TRIGGER *t)
{
    THANDLE *th;
    unsigned long int count;

    th = trig_open_reader (t);
    while (1)



Appendix C: Software Triggering Compatibility 301

    {
        while ( !trig_get_assertion(t,th,&count) )
        {
            trig_update_reader (th,
                (int) (count-trig_get_reader_cnt(th)));
            task_switch();
        }
        trig_update_reader (th,
            (int) (count-trig_get_reader_cnt(th)));
        printf ("Count=%ld \n",count);
    }
}

The following pages provide a function reference for the old triggering functions.



302 Appendix C: Software Triggering Compatibility

trig_assert

void trig_assert (
TRIGGER *t
)

The function trig_asserttrig_asserttrig_asserttrig_assert generates a trigger assertion. The sample count of the
trigger assertion is set to the current trigger count stored in the TRIGGER, so the
trigger count must be current. See the trig_update_writertrig_update_writertrig_update_writertrig_update_writer function for
information about how to keep the trigger count current.



Appendix C: Software Triggering Compatibility 303

trig_get_assertion

int trig_get_assertion (
TRIGGER *t,
THANDLE *th,
unsigned long int *count
)

The function trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion provides trigger information to a receiving task.
Unlike the trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert function, which will cause the task to wait until
a trigger assertion occurs, the trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion function attempts to obtain the
value of the next asserted trigger without waiting. If it returns a nonzero value, one or
more trigger assertions are waiting in the trigger. In this case, the next trigger assertion
is removed from the trigger and count is set to the sample count of this assertion. If
trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion returns zero, no trigger assertions are waiting and count is
set to the current trigger count. The current trigger count is the sample number that the
asserting task currently is processing.



304 Appendix C: Software Triggering Compatibility

trig_get_reader_cnt

unsigned long int trig_get_reader_cnt (
THANDLE *th
)

The routine trig_get_reader_cnttrig_get_reader_cnttrig_get_reader_cnttrig_get_reader_cnt returns the current sample count of a trigger
handle. This function is most useful after calling the trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert
function, which automatically updates the sample count stored in the specified trigger
handle as it waits for trigger events. When the processing task reawakens, it can
determine the current value of the sample count by calling trig_get_reader_cnttrig_get_reader_cnttrig_get_reader_cnttrig_get_reader_cnt
before processing the event.



Appendix C: Software Triggering Compatibility 305

trig_get_writer_cnt

unsigned long int trig_get_writer_cnt (
TRIGGER *t
)

The routine trig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnt returns the current count of a trigger.

Note: trig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnt should be used only by a signaling task. Receiving
tasks should check for active assertions before reading the value of a trigger count --
this is done using the routine trig_get_assertiontrig_get_assertiontrig_get_assertiontrig_get_assertion. In a typical application, the
trig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnttrig_get_writer_cnt function is called after a sequence of updates to check the
number of samples which have been processed.



306 Appendix C: Software Triggering Compatibility

trig_open_reader

THANDLE *trig_open_reader (
TRIGGER *t
)

The function trig_open_readertrig_open_readertrig_open_readertrig_open_reader initializes a trigger and returns a trigger handle
pointer. This function must be called by a task which receives and responds to trigger
assertion events, prior to calling other triggering functions.

Note that trig_open_readertrig_open_readertrig_open_readertrig_open_reader is used by receiving tasks while trig_open_writertrig_open_writertrig_open_writertrig_open_writer
is used by signaling tasks.



Appendix C: Software Triggering Compatibility 307

trig_open_writer

void trig_open_writer (
TRIGGER *t
)

The function trig_open_writertrig_open_writertrig_open_writertrig_open_writer initializes a trigger. This function must be called
by a task which asserts trigger events, prior to calling other triggering functions.

Note that trig_open_writertrig_open_writertrig_open_writertrig_open_writer is used by signaling tasks while trig_open_readertrig_open_readertrig_open_readertrig_open_reader
is used by receiving tasks.



308 Appendix C: Software Triggering Compatibility

trig_set_writer_cnt

void trig_set_writer_cnt (
TRIGGER *t,
unsigned long int count
)

The function trig_set_writer_cnttrig_set_writer_cnttrig_set_writer_cnttrig_set_writer_cnt is used by a signaling task to set the value of a
trigger's count. This function is useful for triggering commands which generate events
at predetermined times, for example, automatic sweep generation.

The function trig_set_writer_cnttrig_set_writer_cnttrig_set_writer_cnttrig_set_writer_cnt always must set the trigger count to a value
which is greater than or equal to the current trigger count.



Appendix C: Software Triggering Compatibility 309

trig_update_reader

void trig_update_reader (
THANDLE *handle,
int val
)

The function trig_update_readertrig_update_readertrig_update_readertrig_update_reader increments the count of a trigger handle by val
samples. This informs the trigger that any events with a lesser or equal sample count
do not need to be maintained in the trigger pipe, and informs the DAPL system that
for all sample counts less than or equal to the updated handle count, any buffered data
reserved for this task are no longer needed, so corresponding memory can be released.

This function must be used after skipping or using all data samples. When data is
obtained in blocks, use the following sequence of operations:

1. call trig_update_readertrig_update_readertrig_update_readertrig_update_reader for those samples which are not used,
2. process the samples which are used,
3. call trig_update_readertrig_update_readertrig_update_readertrig_update_reader for those samples which were just used.

Note that trig_update_readertrig_update_readertrig_update_readertrig_update_reader is used by receiving tasks while
trig_update_writertrig_update_writertrig_update_writertrig_update_writer is used by signaling tasks.



310 Appendix C: Software Triggering Compatibility

trig_update_writer

void trig_update_writer (
TRIGGER *t,
int val
)

The function trig_update_writertrig_update_writertrig_update_writertrig_update_writer increments the count of a trigger by val
samples. This informs the trigger processing commands of progress of the signaling
task. It also makes the trigger count current prior to signaling an event.

When the command processes data in blocks, it is important to update the writer using
the following sequence of steps:

1. call function trig_update_writertrig_update_writertrig_update_writertrig_update_writer for the number of samples processed without
asserting any events,
2. assert the event,
3. call function trig_update_writertrig_update_writertrig_update_writertrig_update_writer after the event is asserted.

Note that trig_update_writertrig_update_writertrig_update_writertrig_update_writer is used by signaling tasks while
trig_update_readertrig_update_readertrig_update_readertrig_update_reader is used by receiving tasks.



Appendix C: Software Triggering Compatibility 311

trig_wait_for_assert

unsigned long int trig_wait_for_assert (
TRIGGER *t,
THANDLE *th,
PIPE *p,
unsigned long pre_count,
int mult
)

The function trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert removes data from a pipe while waiting for a
trigger assertion. It automatically updates the number of processed samples in the
trigger handle count. As the trigger count increases, trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert
removes data from pipe p, always leaving pre_count pretrigger samples in the pipe.
When trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert returns, pipe p contains data beginning pre_count
samples before the next trigger assertion.

The mult parameter specifies a trigger rate time correction and always should be the
number one.

The value returned by trig_wait_for_asserttrig_wait_for_asserttrig_wait_for_asserttrig_wait_for_assert is the sample count of the trigger
assertion.





Index 313

Index

Accessing FIR Results...............................................................................................................99
Additional FIR Operations ........................................................................................................99
Advanced Parameter Checking..................................................................................................24
Allocation ..................................................................................................................................31
Allocations ................................................................................................................................31
Application examples

PID controller .....................................................................................................................132
argv..............................................................................................................................10, 21, 206
Assembly Language in Custom Commands ............................................................................142
Assertion....................................................................................................................................52
atof...........................................................................................................................................163
Auxiliary function ...................................................................................................................139
Auxiliary Functions ...................................................................................................................30
Batch files........................................................................................................................143, 144
BCC.BAT........................................................................................................................143, 144
BCOPY2.C................................................................................................................................42
BDOWNLOAD.......................................................................................................................151
BIN..........................................................................................................................................148
Binary Code Compatibility......................................................................................................285
Binary output.............................................................................................................47, 167, 168
Blocked Pipe Operations ...........................................................................................................39
BPID2.C ..................................................................................................................110, 121, 123
Buffer size selections.................................................................................................................17
BUFFERS STATIC................................................................................................................. 130
BWAVE ..................................................................................................................................106
BZTRUNC.C.............................................................................................................................44
C Functions

dac_out................................................................................................................................118
exit ......................................................................................................................128, 203, 204
fir_init ...................................................................................................................................95
fir_receive .............................................................................................................................95
fir_request .............................................................................................................................95
fir_status................................................................................................................................95
icoswave................................................................................................................71, 197, 200
icplxwave ..............................................................................................................................71
isinewave.......................................................................................................................71, 197
main ..........................................................................................................................10, 11, 20
matherr ..................................................................................................................................69
param_error.........................................................................................................................128
param_process.........................................................................................30, 66, 128, 139, 283
pbuf_get ......................................................................................130, 211, 213, 214, 220, 221
pbuf_get_data_ptr ...............................................................................................................219
pbuf_open .....................................................................................31, 209, 213, 214, 217, 220



314 Index

pbuf_put.............................................................................................................................. 218
pbuf_set_cnt ......................................................................................................................... 66
pbuf_set_data_ptr ............................................................................................................... 216
pbuf_set_max_cnt............................................................................................... 216, 219, 221
pbuf_set_min_cnt ....................................................................................................... 216, 219
pid_open ..................................................................................................................... 116, 228
pid_set_setpoint .................................................................................................. 118, 222, 224
pid_tune ...................................................................................................... 222, 224, 225, 229
pid_update .................................................................................................. 118, 222, 224, 228
pipe_num ............................................................................................ 123, 128, 230, 231, 235
pipe_num_complete............................................................................................ 230, 231, 233
pipe_open ..................................................................................................................... 31, 216
pipe_put .............................................................................................................................. 140
pipe_rem............................................................................................................................. 237
printf ........................................................................................................................... 144, 145
ralloc ............................................................................................................................. 32, 194
sys_get_info.......................................................................................................................... 16
sys_set_multitasking........................................................................................................... 128
task_switch ......................................................................................................................... 112
trigger_get........................................................................................................................... 258

C Names.................................................................................................................................. 138
C Restrictions.......................................................................................................................... 148
C Runtime Routines ................................................................................................................ 161
CDAPCC.H................................................................................................................. 10, 13, 147
Cepstrum example..................................................................................................................... 91
CEPSTRUM.C........................................................................................................................ 294
Code Conversion..................................................................................................................... 148
COMLOAD..................................................................................................................... 143, 151
Compatibility .............................................................................................................................. 2
Compilation Messages ............................................................................................................ 281
Compiler Limitations ................................................................................................................ 64
Compilers .................................................................................................................................... 2

Command Line Options...................................................................................................... 146
optimization ........................................................................................................................ 147

Compiling Custom Commands ............................................................................................... 143
CONSTANT ............................................................................................................................. 14
Constants and Enumerations ..................................................................................................... 15
Control Commands ................................................................................................................. 116
Conversion .............................................................................................................................. 143
Conversion Messages.............................................................................................................. 282
COPY2.C .................................................................................................................................. 35
CPRINT.C................................................................................................................................. 25
CSTART.OBJ ......................................................................................................................... 146
Custom Task Parameters ........................................................................................................... 20
Custom Waveforms................................................................................................................... 71
DAC Access .............................................................................................................................. 47
dac_out............................................................................................................................ 118, 164



Index 315

DAP 2400a Support ................................................................................................................289
DAP 2416a ..............................................................................................................................289
DAP 2416a Support ................................................................................................................289
DAPL commands

BDOWNLOAD...................................................................................................................151
BUFFERS STATIC ............................................................................................................130
ERASE..................................................................................................................................36
ERRORQ ..............................................................................................................................25
FILL......................................................................................................................................36
NOWAIT ......................................................................................................33, 217, 238, 239
OPTIONS............................................................................................................................110
PIPES..................................................................................................................................217
RESET ..................................................................................................................................36
RESTART.............................................................................................................................36
START................................................................................................................................281
STOP...................................................................................................................................243
WAIT ......................................................................................................33, 56, 217, 238, 239

DAPL Names...........................................................................................................................138
DAPL parameter types ..............................................................................................................15
DAPL version..............................................................................................................................2
DAPview .........................................................................................................................143, 151
Data array ................................................................................................................................215
Data Smoothing Application ...................................................................................................102
Debugging Custom Commands ...............................................................................................140
Deferred Post-FFT Processing...................................................................................................87
Digital Output Lines ..................................................................................................................47
digital_out ...............................................................................................................................166
digital_set_bit ..........................................................................................................................167
digital_toggle_bit.....................................................................................................................168
Digital-to-analog converter........................................................................................................47
Downloading ...........................................................................................................................145

from COMLOAD................................................................................................................143
from DAPview ....................................................................................................................143

Downloading from C...............................................................................................................152
Downloading from Pascal .......................................................................................................154
Downloading Messages...........................................................................................................283
DSP configuration selections ....................................................................................................18
DSP request structure ..............................................................................................................289
DSP Routines ..........................................................................................................................296
DSP Support..............................................................................................................................71
dsp_alloc .................................................................................................................................297
dsp_done .................................................................................................................................298
dsp_receive_result ...................................................................................................................299
dsp_request_init ......................................................................................................................300
dsp_send_request ....................................................................................................................302
DTDC.LIB...............................................................................................................................146
EEG Filtering Example ...........................................................................................................105



316 Index

eMultiOff ........................................................................................................................ 128, 254
eMultiOffSYSIN............................................................................................................. 128, 254
eMultiOn......................................................................................................................... 128, 254
ERASE...................................................................................................................................... 36
errno .......................................................................................................................................... 69
Error Messages........................................................................................................................ 281
ERRORQ .................................................................................................................................. 25
Errors ...................................................................................................................................... 281
Establishing the Connection...................................................................................................... 52
Example Application................................................................................................................. 67
Example applications .............................................................................................................. 132
Example FFT Application ......................................................................................................... 89
Execution Messages ................................................................................................................ 283
EXEPROC ........................................................................................................................ 64, 148
exit .................................................................................................................. 128, 169, 203, 204
FFT............................................................................................................................................ 74
FFT Direction Options .............................................................................................................. 78
FFT Initialization ...................................................................................................................... 74
FFT Precision Options .............................................................................................................. 78
FFT Programming Examples .................................................................................................. 292
FFT Storage............................................................................................................................... 75
FFT Transforms......................................................................................................................... 74
FFT Window Operations........................................................................................................... 77
FFT With Multiple Buffers ....................................................................................................... 88
FFT_AMPLITUDE................................................................................................................. 290
fft_chngbuf.............................................................................................................................. 170
FFT_COMPONENTS............................................................................................................. 290
FFT_CPLXIN ........................................................................................................................... 82
FFT_FORWARD.................................................................................................................... 290
FFT_FULLOUT........................................................................................................................ 83
FFT_HALFOUT ....................................................................................................................... 83
FFT_HAMMING.................................................................................................................... 290
FFT_HANNING ..................................................................................................................... 290
fft_init ..................................................................................................................................... 171

direction................................................................................................................................ 78
post ....................................................................................................................................... 80
size........................................................................................................................................ 75
solution ................................................................................................................................. 78

FFT_PAIRWISE....................................................................................................................... 83
fft_postop ................................................................................................................................ 175
FFT_POWER.......................................................................................................................... 290
FFT_REALIN ........................................................................................................................... 82
fft_receive ............................................................................................................................... 177
FFT_RECTANGULAR .......................................................................................................... 290
fft_request ............................................................................................................................... 178
FFT_REVERSE...................................................................................................................... 290
FFT_SEPARATED................................................................................................................... 83



Index 317

fft_status ..................................................................................................................................179
FFT2 example............................................................................................................................89
FFT2.C ....................................................................................................................................292
FFTB ...................................................................................................................................14, 74
FFTDIR_FORWARD ...............................................................................................................78
FFTDIR_REVERSE ................................................................................................................. 78
FFTPOST_MAG_PHASE.........................................................................................................82
FFTPOST_MAGNITUDE ........................................................................................................82
FFTPOST_NORMPOWER.......................................................................................................81
FFTSIZE....................................................................................................................................75
FFTSOLN_ACCURATE...........................................................................................................78
FFTSOLN_FAST......................................................................................................................78
FGEN utility ..............................................................................................................................96
FILL ..........................................................................................................................................36
FIR Filter Computation .............................................................................................................98
FIR Filter Initialization..............................................................................................................95
FIR Filter Status ........................................................................................................................99
FIR Filters .................................................................................................................................95
fir_advance ......................................................................................................................100, 180
fir_change........................................................................................................................100, 182
fir_init................................................................................................................................95, 184

coeffs.....................................................................................................................................96
decimate ................................................................................................................................97
length ....................................................................................................................................96
scale ......................................................................................................................................96

fir_receive.................................................................................................................... 95, 99, 186
fir_request.................................................................................................................... 95, 98, 187
fir_status ......................................................................................................................95, 99, 189
FIRB....................................................................................................................................14, 95
FLOAT.C ..................................................................................................................................67
Floating Point ..................................................................................................................113, 282
Floating Point Error Handling...................................................................................................69
Floating Point Library Functions...............................................................................................63
Floating Point Support ..............................................................................................................61
FP library batch files ...............................................................................................................145
fprintf.......................................................................................................................................190
fsend ........................................................................................................................................191
Functions and Macros ...............................................................................................................15
GI request codes ........................................................................................................................16
Handle .......................................................................................................................................52
Hardware types ..........................................................................................................................16
Header files..............................................................................................................................161
HOLDOFF.C...........................................................................................................259, 266, 267
icosine .....................................................................................................................................192
icoswave ............................................................................................................71, 193, 197, 200
icplxwave...........................................................................................................................71, 196
Include files .............................................................................................................................161



318 Index

Initializations............................................................................................................................. 31
Input Procedure Buffering....................................................................................................... 130
Installation................................................................................................................................... 3
Interrupts ................................................................................................................................. 109
Interrupts and Latency............................................................................................................. 135
Intrinsic optimization .............................................................................................................. 282
Introduction................................................................................................................................. 1
isine......................................................................................................................................... 198
isinewave................................................................................................................... 71, 197, 199
isqrt ......................................................................................................................................... 201
Latency............................................................................................................ 109, 110, 118, 135
LCONSTANT ........................................................................................................................... 14
Libraries .................................................................................................................................... 51

batch files............................................................................................................................ 145
LIMIT2.C.................................................................................................................................. 56
Linking............................................................................................................................ 143, 147
Linking Messages.................................................................................................................... 281
LSFILTER .............................................................................................................................. 103
LVAR.................................................................................................................................. 14, 22
main............................................................................................................................... 10, 11, 20
Math functions .......................................................................................................................... 63
Math libraries .......................................................................................................................... 162
matherr ...................................................................................................................................... 69
MCC.BAT....................................................................................................................... 143, 144
memcpy................................................................................................................................... 202
Motorola DSP 56001 .............................................................................................................. 289
Multitasking .................................................................................................................... 110, 112
Multitasking Applications ....................................................................................................... 131
Multitasking control selections ................................................................................................. 17
Multitasking Off...................................................................................................................... 129
Multitasking Support............................................................................................................... 127
Naming Task Parameters......................................................................................................... 139
NOWAIT........................................................................................................... 33, 217, 238, 239
Old Triggering Functions ........................................................................................................ 303
Optimizing Custom Commands .............................................................................................. 141
OPTIONS................................................................................................................................ 110
Other Options............................................................................................................................ 82
Other Pipe Routines .................................................................................................................. 45
P_READ ........................................................................................................................... 15, 236
P_WRITE.......................................................................................................................... 15, 236
param_error..................................................................................................................... 128, 203
param_error_msg .................................................................................................................... 204
param_process..................................................................................... 30, 66, 128, 139, 206, 283
param_type.............................................................................................................................. 208
Parameter list information block ............................................................................................... 20
Parameter Type Checking ................................................................................................... 23, 28
Parameter Types........................................................................................................................ 22



Index 319

Parameters ...............................................................................................................................139
PBUF...................................................................................................................................14, 39
pbuf_get...................................................................................130, 209, 211, 213, 214, 220, 221
pbuf_get_cnt............................................................................................................................211
pbuf_get_data_ptr............................................................................................................212, 219
pbuf_get_max_cnt ...................................................................................................................213
pbuf_get_min_cnt....................................................................................................................214
pbuf_open..................................................................................31, 209, 213, 214, 215, 217, 220
pbuf_put ..........................................................................................................................217, 218
pbuf_set_cnt ......................................................................................................................66, 218
pbuf_set_data_ptr ............................................................................................................216, 219
pbuf_set_max_cnt............................................................................................216, 219, 220, 221
pbuf_set_min_cnt ....................................................................................................216, 219, 221
PC Support ..............................................................................................................................151
PIB ......................................................................................................................................14, 20
PID ....................................................................................................................................14, 116
PID Applications .....................................................................................................................119
PID Control .............................................................................................................................115
PID functions

pid_open .....................................................................................................................116, 228
pid_preset............................................................................................................................117
pid_set_setpoint ..................................................................................................118, 222, 224
pid_tune ..............................................................................................116, 222, 224, 225, 229
pid_update...................................................................................................118, 222, 224, 228

pid_open..................................................................................................................................222
pid_preset ................................................................................................................................223
pid_set_setpoint.......................................................................................................................225
pid_tune...................................................................................................................................226
pid_update ...............................................................................................................................229
PIDCOEF ..........................................................................................................................14, 116
PIPE ....................................................................................................................................14, 22
Pipe Applications ......................................................................................................................35
Pipe buffer .................................................................................................................................39
Pipe input/output flags ..............................................................................................................15
Pipe Read Routines ...................................................................................................................33
Pipe Write Routines...................................................................................................................33
pipe_get ...................................................................................................................................230
pipe_get_float..........................................................................................................................231
pipe_num.........................................................................................123, 128, 230, 231, 232, 235
pipe_num_complete ........................................................................................230, 231, 233, 234
pipe_open ..................................................................................................................31, 216, 236
pipe_purge...............................................................................................................................237
pipe_put...........................................................................................................................140, 238
pipe_put_float..........................................................................................................................239
pipe_rem..........................................................................................................................237, 240
pipe_width...............................................................................................................................241
plib ............................................................................................................................................20



320 Index

Post-FFT Processing ................................................................................................................. 80
Previous Versions ................................................................................................................... 285
printf........................................................................................................................ 144, 145, 242
Processing speed ..................................................................................................................... 109
Programming in C ....................................................................................................................... 5
Programming Suggestions....................................................................................................... 137
PRT.C ....................................................................................................................................... 38
PVAL.C .................................................................................................................................... 33
R_INSIDE........................................................................................................................... 15, 22
R_OUTSIDE....................................................................................................................... 15, 22
ralloc ......................................................................................................................... 32, 194, 243
RAVE.C.................................................................................................................................... 36
README.TXT ........................................................................................................................... 3
Real Time Clock........................................................................................................................ 48
Real-Time Control .................................................................................................................. 109

Latency ............................................................................................................................... 135
Receiving task ........................................................................................................................... 52
Region flag................................................................................................................................ 22
Region flag values..................................................................................................................... 15
Request codes............................................................................................................................ 16
RESET ...................................................................................................................................... 36
RESTART................................................................................................................................. 36
Routine...................................................................................................................................... 15
RTALARM.C.......................................................................................................................... 131
RTBPID.C............................................................................................................................... 133
Running Custom Commands................................................................................................... 143
Runtime libraries........................................................................................................... 2, 51, 161
Runtime Library, Library ........................................................................................................ 157
Sample Custom Command.......................................................................................................... 9
Scheduling control selections.................................................................................................... 17
send ......................................................................................................................................... 244
SGEN.C .................................................................................................................................... 48
Signaling task............................................................................................................................ 52
SMALL library batch files ...................................................................................................... 145
Software Triggering .................................................................................................................. 51
Software Triggering Compatibility.......................................................................................... 303
Source Code Compatibility ..................................................................................................... 286
special functions........................................................................................................................ 28
Special Trigger Modes .............................................................................................................. 56
SPID2.C .................................................................................................................................. 119
sprintf ...................................................................................................................................... 245
sscanf....................................................................................................................................... 246
Stack size......................................................................................................................... 144, 283
START.................................................................................................................................... 281
Static ............................................................................................................................... 148, 282
STOP....................................................................................................................................... 243
Storage allocation.................................................................................................................... 283



Index 321

Strategies for Improving Real-Time Response ........................................................................112
String .........................................................................................................................................22
String output..............................................................................................................................38
Structures and Types .................................................................................................................14
Suspending and Resuming Multitasking .................................................................................128
Switch......................................................................................................................................148
Symbol defined more than once ..............................................................................................282
sys_exec_command .................................................................................................................247
sys_get_info.......................................................................................................................16, 248
sys_get_time ............................................................................................................................252
sys_get_version .......................................................................................................................253
sys_set_multitasking........................................................................................................128, 254
System Interface File .................................................................................................................13
T_CONST_L.............................................................................................................................15
T_CONST_W....................................................................................................................15, 207
T_PIPE_B .................................................................................................................................15
T_PIPE_FL ...............................................................................................................................15
T_PIPE_L..................................................................................................................................15
T_PIPE_W ........................................................................................................................15, 207
T_RFLAG..................................................................................................................................15
T_STR .......................................................................................................................................15
T_TRIGGER .............................................................................................................................15
T_VAR_L..................................................................................................................................15
T_VAR_W ........................................................................................................................ 15, 207
T_VECTOR_L ..........................................................................................................................15
T_VECTOR_W.........................................................................................................................15
Task Control Routines...............................................................................................................46
Task Parameters.......................................................................................................................137
task_pause ...............................................................................................................................255
task_switch ......................................................................................................................112, 256
TASKSTAT.............................................................................................................................141
Text Transfer .............................................................................................................................38
The Toolkit Libraries.................................................................................................................62
Time delay.................................................................................................................................48
TLINK.....................................................................................................................................145
trig_assert ................................................................................................................................310
trig_get_assertion ....................................................................................................................311
trig_get_reader_cnt..................................................................................................................312
trig_get_writer_cnt ..................................................................................................................313
trig_open_reader......................................................................................................................314
trig_open_writer ......................................................................................................................315
trig_set_writer_cnt...................................................................................................................316
trig_update_reader...................................................................................................................317
trig_update_writer ...................................................................................................................318
trig_wait_for_assert .................................................................................................................319
TRIGGER............................................................................................................................14, 22
Trigger assertion........................................................................................................................52



322 Index

Trigger Functions ...................................................................................................................... 53
Trigger status............................................................................................................................. 52
trigger_get ....................................................................................................................... 257, 258
trigger_get_immediate............................................................................................................. 258
trigger_get_opmode ................................................................................................................ 260
trigger_get_property................................................................................................................ 261
trigger_get_status .................................................................................................................... 263
trigger_num............................................................................................................................. 264
trigger_open ............................................................................................................................ 265
trigger_put............................................................................................................................... 266
trigger_set_status..................................................................................................................... 267
trigger_updt_put...................................................................................................................... 269
trigger_updt_status.................................................................................................................. 271
trigger_wait ............................................................................................................................. 272
Triggering Examples ................................................................................................................. 56
Typical FFT Options ................................................................................................................. 84
Undefined symbol ................................................................................................................... 282
Unresolved externals ............................................................................................................... 281
Using Pipes ............................................................................................................................... 65
Using Runtime Library.............................................................................................................. 19
VAR .................................................................................................................................... 14, 22
var32_get................................................................................................................................. 274
var32_set ................................................................................................................................. 275
VARIABLE............................................................................................................................... 10
Variables and Constants............................................................................................................ 27
VECTOR............................................................................................................................. 14, 22
vector_length..................................................................................................................... 28, 276
vector_start........................................................................................................................ 28, 277
vector_type........................................................................................................................ 28, 278
vector_width...................................................................................................................... 28, 279
Vectors ...................................................................................................................................... 28
WAIT .......................................................................................................... 33, 56, 217, 238, 239
WAIT1.C................................................................................................................................... 57
Window vectors .............................................................................................................. 290, 300
ZTRUNC.C................................................................................................................................. 9


	Introduction
	Compatibility
	Installation
	Data Acquisition Programming in C
	Sample Custom Command
	System Interface File
	Structures and Types
	Functions and Macros
	Constants and Enumerations
	Using the Data Acquisition Runtime Library
	Custom Task Parameters
	Parameter Types
	Parameter Type Checking
	Advanced Parameter Checking
	Variables and Constants
	Vectors
	Auxiliary Functions
	Initializations and Allocations
	Pipe Read and Write Routines
	Application Examples Using Pipes
	Text Transfer
	Blocked Pipe Operations
	Other Pipe Routines
	Task Control Routines
	DAC Access
	Digital Output Lines
	Real Time Clock
	Software Triggering Support
	Establishing the Connection
	Using the Trigger Functions
	Special Trigger Modes
	Triggering Command Examples
	Floating Point Support
	The Toolkit Libraries
	Floating Point Library Functions
	Compiler Limitations
	Using Pipes
	Example Application
	Floating Point Error Handling
	Digital Signal Processing Support
	Building Custom Waveforms
	Performing FFT Transforms
	
	FFT Initialization
	FFT Storage
	FFT Window Operations
	FFT Precision Options
	FFT Direction Options
	Post-FFT Processing Options
	Other Options
	Typical FFT Options


	Deferred Post-FFT Processing
	FFT Processing With More Than One Buffer
	Example FFT Application
	Using Finite Impulse Response Digital Filters
	
	FIR Filter Initialization
	FIR Filter Computation
	FIR Filter Status
	Accessing FIR Results
	Additional FIR Operations


	A Data Smoothing Application
	An EEG Filtering Example
	Real-Time Control
	Strategies for Improving Real-Time Response
	Using Floating Point
	Customizing PID Control
	Designing Control Commands
	Example Applications
	Multitasking Support
	Suspending and Resuming Multitasking
	Available Services with Multitasking Off
	Input Procedure Buffering
	Application Examples
	Interrupts and Latency
	Programming Suggestions
	Task Parameters
	DAPL Names and C Names
	Naming Task Parameters
	Debugging Custom Commands
	Optimizing Custom Commands
	Using Assembly Language in Custom Commands
	Compiling Custom Commands
	An Overview: Compiling and Running Custom Commands
	Batch Files
	Code Conversion
	C Restrictions
	PC Support
	Downloading from C
	Downloading from Borland Pascal
	Data Acquisition Runtime Library
	
	Pipe Operations
	Pipe Buffer (PBUF) Operations
	Data Access
	Vectors
	Task Control
	Text Formatting
	Asynchronous Device Output
	Triggers
	FFT
	Digital Filters
	PID Feedback Control
	General Math
	Requests to Command Interpreter


	C Compiler Runtime Routines
	Error Messages
	
	Compilation Messages
	Linking Messages
	Conversion Messages
	Downloading Messages
	Execution Messages


	Appendix A. Compatibility with Previous Versions
	Binary Code Compatibility
	Source Code Compatibility
	Appendix B: DAP€2400a/DAP€2416a DSP Support
	FFT Programming Examples

	DSP Routines for the DAP€2400a and DAP€2416a
	Appendix C: Software Triggering Compatibility
	Using the Old Triggering Functions
	Index

