

Using the iDSC Board with LabVIEW 1

1. Using the iDSC Board with LabVIEW

LabVIEW provides a graphical programming environment for which the iDSC board
provides an ideal signal conditioning and data acquisition front end. A LabVIEW
application can call iDSC board functions in the DSCIO DLL to acquire the full
programmability and power of the iDSC board.

LabVIEW accesses iDSC board functions in DSCIO DLL through the Call
Library Function node, which is a VI library function in LabVIEW. It is easy to
use with a dialog box to configure all of the parameters required for each function.

Microstar Laboratories simplifies the task further by providing this package - iDSC
Board support for LabVIEW. This package contains this reference manual and
DSC.LLB, which contains the following components.

1. A collection of Call Library Function nodes for each functions in
DSCIO DLL

2. Several subVIs to aid reducing the development time for an application

3. Several examples to show the use of many of the Call Library
Function nodes and subVIs.

The iDSC support for LabVIEW supports LabVIEW version 5.1 or later.

Installation

The following steps show the procedure on installing iDSC Board support of
LabVIEW.

1. LabVIEW must be installed correctly. Please refer to the LabVIEW installation
instructions.

2. Install iDSC Development from the DAPtools CD. The default installed directory
is C:\Program Files\Microstar Laboratories\iDscDev. The iDSC
Board Support for LabVIEW can be found in the APPSW\BIN subdirectory.

3. To verify the iDSC board and its software are installed and running properly,
please run DSCview in the APPSW\BIN subdirectory. Exit DSCview before
running any iDSC board examples or applications in LabVIEW.

2 Using the iDSC Board with LabVIEW

Creating an iDSC Board Application in LabVIEW

Modifying one of the examples described below may create a new application in
LabVIEW. The following section provides an outline about how LabVIEW interfaces
to the iDSC board.

An iDSC board application should performs the following steps:
1. Opens a handle to an iDSC board with the function DscHandleOpen.
2. Defines the configuration of the board using a dialog box, a saved configuration

 file, or iDSC board configuration functions
3. Starts data acquisition with the function DscStartAcquiring.
4. Reads and processes the acquired data.
5. Stops data acquisition with the function DscStopAcquiring.
6. Closes the handle to the iDSC board with the function DscHandleClose.

The iDSC Init subVI provides all of the initialization routines, step 1 to 3, in one
subVI.

After initialization, an application can read data from the iDSC board by using either
DscBufferGet or DscBufferGetEx. The iDSC Read subVI performs the read data
routines, step 4, in one subVI.

The iDSC Close subVI provides all of the termination routines, step5 and 6, to stop
acquisition and terminate communication with the iDSC.

It is important to terminate the communication with the iDSC board using the
provided functions in DSCIO DLL. The STOP button on the button bar does not stop
the iDSC board, meaning THE iDSC WILL CONTINUE TO RUN EVEN THOUGH
THE LABVIEW STOP BUTTON WAS PRESSED. It is best to put a button on the
user panel that controls the termination of a run. The STOP button should enable the
final sequence to run the iDSC Close subVI which closes the ACCEL32 Handle
assigned to the application. Please see examples on how to accomplish this.

Running the LabVIEW iDSC Board Examples

Several examples applications are included and demonstrate how LabVIEW interfaces
with an iDSC board. The examples can be found in DSC.LLB in the APPSW\LABVIEW
subdirectory under the installed directory. To run the examples, an iDSC board and its
software have to be installed and running properly.

Using the iDSC Board with LabVIEW 3

App01 - BASIC

This example provides a very easy to use interface to an iDSC board. It uses one
object, iDSC subVI, to provide access to iDSC configuration options and resulting
data. This example reconfigures the iDSC board for each new block of data. For
continuous operation and even more flexible options see the next example, App02.

App02 - GRAPH

This example is similar to App01 but adds transferring data continuously and
configurability in accessing an iDSC board. This example uses an iDSC Init subVI to
initialize iDSC board communication. The iDSC Init subVI will return the number of
active channels. Based on this information, an iDSC Read subVI is used to read
blocks of data and send the data to a graph, which automatically configures itself for
the proper number of channels.

App03 - LOG

This example is similar to App02 but adds logging data to a file. Note that LabVIEW
may use a special data format for data storage that may need conversion if read by
applications other than LabVIEW.

App04 - LOGVW

This example shows how to read the file created by App03. This example is
configured to read data for eight channels. If the data file is acquired for a different
number of channels, the Number of Channels field needs to be modified accordingly.

App05 - DaplFFT

This example shows how to use DAPL interface. It configures an iDSC board with
DAPL commands, reads data, and graphs the data with one trace for each channel. In
this example, the DAPL commands configure the iDSC board to calculate forward fast
Fourier transforms (FFT) of blocks of real-values data and send an amplitude
spectrum to this example in LabVIEW. The amplitude spectrum received from
iDSC Read will be sent to a graph for display.

App06 - DaplCC

This example is similar to App05 but applies custom commands BZTRUNC and RAVE
to input channels instead of FFT. The BZTRUNC command truncates any number

4 Using the iDSC Board with LabVIEW

below 0 in an input channel, and RAVE computes the running average of the specified
number of data points, 100 in this example, in an input channel. In this example, both
raw and analyzed data for the input channels are sent to this example. The data
received from iDSC Read will be sent to a graph for display.

App07 - Disk Logging (1 iDSC)

This example shows how to stream data directly to a disk file by using DAPcell Server
disk logging service. This is implemented by the DiskLog subVI, which loads
configurations to a server by a wrapper function MslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSet
. While the server is logging data to a disk file, the number of data being logged will
be queried by using a Num Data subVI.

The server continues to log data to the disk file until the specified amount of data in
DiskLog subVI, which is 100000 values per channel in this case, have been recorded,
or the STOP button is pressed.

Before running this example, please make sure the following configurations are
correct.
- The disk logging option is enabled and a valid default path is entered in Windows
Control Panel | Data Acquisition Processor | Disk I/O.

App08 - Disk Logging (2 iDSC with synchronization)

This example is similar to App07 but adds one more iDSC board. The two iDSC
boards are synchronized as master and slave by using iDSC MaSl subVI. Similar to
App07, this example logs data to a disk file by a server and queries for the number of
byte being logged to each file for each board.

The server continues to log data to the disk file until the specified amount of data in
DiskLog subVI, which is 100000 values per channel in this case, have been recorded
for each boards, or the STOP button is pressed.

Before running this example, please make sure the following configurations are
correct.
- Two iDSC 1816 boards are connected by a synchronization cable, with part number
MSCBL 078.
- The disk logging option is enabled and a valid default path is entered in Windows
Control Panel | Data Acquisition Processor | Disk I/O.

Using the iDSC Board with LabVIEW 5

App09 � A Group of iDSC

This example shows how to use group services provided by DSCIO DLL. In this
example a DSCIO DLL function DscGroupConfigDialogShow is called to display
a modal dialog screens for graphical configuration of multiple iDSC boards. It loads a
configuration file GROUP.DSC for a group of two iDSC boards, which are configured
as independent. The two iDSC boards can be synchronized by setting the appropriate
mode. For more information, please see DscGroupConfigDialogShow.

The iDSC Read subVI are used to read blocks of data from the iDSC boards. The data
will be sent data to graphs, which automatically configures themselves for the proper
number of channels based on the dimension of the data array.

6 Using the iDSC Board with LabVIEW

DLL Reference

This package contains a list of Call Library Function nodes that are configured
to call the functions in DSCIO DLL and MSLAPP DLL. The list can be found in
DSC.LLB, which is located in the APPSW\LABVIEW subdirectory under the installed
directory.

DSCIO DLL Function Reference
This DSCIO DLL provides a complete set of functions for communicating with iDSC
boards. The table below shows a complete list of Call Library Function nodes
and its corresponding functions in DSCIO DLL. The name of each Call Library
Function node may slightly different than the corresponding function in DSCIO
DLL, but they share the same parameters list. For more information on the parameter
lists, please see DSCIO Reference manual.

Call Library FunctionCall Library FunctionCall Library FunctionCall Library Function node in
DSC.LLBDSC.LLBDSC.LLBDSC.LLB DSCIO DLL Functions

DscHandleOpenA DscHandleOpen
DscHandleClose DscHandleClose
DscCalibrate DscCalibrate
DscCommandsLoad DscCommandsLoad
DscStartAcquiring DscStartAcquiring
DscStopAcquiring DscStopAcquiring
DscBufferAvail DscBufferAvail
DscBufferGet DscBufferGet
DscBufferGetEx DscBufferGetEx
DscConfigRead DscConfigRead
DscConfigWrite DscConfigWrite
DscConfigWriteSize DscConfigWriteSize
DscConfigDialogShow DscConfigDialogShow
DscFilterNameGet Obsolete
DscFilterNameSet Obsolete
DscPinToFilterMapGet DscPinToFilterMapGet
DscPinToFilterMapSet DscPinToFilterMapSet
DscFilterIndexA DscFilterIndex
DscGroupDelay DscGroupDelay
DscAddressGetA DscAddressGet
DscAddressSetA DscAddressSet
DscIdGetA DscIdGet

Using the iDSC Board with LabVIEW 7

DscIdSetA DscIdSet
DscOperateModeGet DscOperateModeGet
DscOperateModeSet DscOperateModeSet
DscSampleRateGet DscSampleRateGet
DscSampleRateSet DscSampleRateSet
DscPinEnabledGet DscPinEnabledGet
DscPinEnabledSet DscPinEnabledSet
DscPinEnabledCount DscPinEnabledCount
DscMasterGet DscMasterGet
DscMasterSet DscMasterSet
DscSlaveCount DscSlaveCount
DscMemoryUsed (new) DscMemoryUsed
DscLastErrorTextGetA DscLastErrorTextGet
DscLastErrorTextSetA DscLastErrorTextSet
DscDaplTextSetA DscDaplTextSet
DscDaplTextLengthGet DscDaplTextLengthGet
DscDaplTextGetA DscDaplTextGet
DscDaplCCDownloadGet DscDaplCCDownloadGet*
DscDaplCCDownloadSet DscDaplCCDownloadSet*
DscDaplCCListGetA DscDaplCCListGet*
DscDaplCCListLengthGet DscDaplCCListLengthGet*
DscDaplCCListSetA DscDaplCCListSet*
DscDaplCCStackSizeGet DscDaplCCStackSizeGet*
DscDaplCCStackSizeSet DscDaplCCStackSizeSet*
DscServerDiskLogEnabledSet (new) DscServerDiskLogEnabledSet
DscServerDiskLogEnabledGet (new) DscServerDiskLogEnabledGet
DscServerDiskLogBytes (new) DscServerDiskLogBytes
DscXbCalibrate (new) DscXbCalibrate
DscXbEnabledGet (new) DscXbEnabledGet
DscXbEnabledSet (new) DscXbEnabledSet
DscXbPinConfigGet (new) DscXbPinConfigGet
DscXbPinConfigSet (new) DscXbPinConfigSet
DscGroupConfigDialogShow (new) DscGroupConfigDialogShow
DscGroupHandleOpen (new) DscGroupHandleOpen
DscGroupHandleClose (new) DscGroupHandleClose
DscGroupAddOne (new) DscGroupAddOne
DscGroupDeleteOne (new) DscGroupDeleteOne
DscGroupCount (new) DscGroupCount
DscGroupDsc (new) DscGroupDsc
DscGroupConfigRead (new)d DscGroupConfigRead
DscGroupConfigWrite (new) DscGroupConfigWrite
DscGroupConfigWriteSize (new) DscGroupWriteSizes

8 Using the iDSC Board with LabVIEW

* For more information, please see obsolete interface in the
DSCIO Function Summary.

MSLAPP DLL Function Reference
Due to the data types in LabVIEW, some DSCIO functions, which initialized by
structures, cannot be accessed directly in LabVIEW. A wrapper function is
implemented to interface between DSCIO DLL and LabVIEW. The wrapper function
builds the structure, and passes it to the DSCIO function it interfaces with. All
wrapper functions have the prefix Msl with the function for which they interface.

DSCIO DLL Routines Call Library FunctionCall Library FunctionCall Library FunctionCall Library Function node in DSC.LLBDSC.LLBDSC.LLBDSC.LLB

DscServerDiskLogConfigSet MslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSet
DscFilterParametersSet MslDscFilterParametesSetMslDscFilterParametesSetMslDscFilterParametesSetMslDscFilterParametesSet

Data Format

The DSCIO DLL function reference uses C data types when specifying the type of
each parameter. Here is a brief cross references to help determine corresponding
LabVIEW data types:

C Data Type LabVIEW Data Type

Char* C String Pointer
Int Signed 32-bit Integer
Short * Signed 16-bit Integer
Long Unsigned 32-bit Integer
Double Double
HDSC Signed 32-bit Integer
TBufferGetEx Array Data Pointer of Signed 32-bit Integer. See

iDSC Read subVI for an example of using this
structure in LabVIEW. See DSCIO Reference
Manual for details.

TDscIoInt64 Array Data Pointer of Signed 32-bit Integer. For
example usage, please see Num Data subVI. For
more information, please see DSCIO Reference
Manual.

TXbPinConfig Array Data Pointer of Signed 32-bit Integer. For

Using the iDSC Board with LabVIEW 9

more information, please see DSCIO Reference
Manual.

MslDscServerDiskLogConfigSet

Input
Name
(Type)

Corresponding parameters in
TServerDiskLogConfig and
brief descriptions Output

Pass-
throug
h

1: hDsc

(Integer)
--- 1: True

2: Flag
(Long)

DwFlags
Specifies various logging
options.

2: True

3 LogFile
(String)

pszFileName
Points to a null-terminated string
that specifies the name of the
disk logfile.

3: True

4: FileShareMode
(Long)

dwFileShareMode
Specifies the file share properties
of the disk logfile.

4: True

5 OpenFlags
(Long)

dwOpenFlags
Specifies how file opening is to
be handled.

5: True

6: FileFlagsAttr
ibutes
(Long)

dwFileFlagsAttributes
Specifies additional file
attributes.

6: True

7: BlockSize
(Long)

dwBlockSize
Specifies the minimum amount
of data, in bytes, to write to the
logfile at one time.

7: True

8: Lowi64
(Long)

I64MaxCount
Specifies the low 32-bit
maximum number of bytes to

8: True

10 Using the iDSC Board with LabVIEW

log.
9: Highi64

(Long)
I64MaxCount
Specifies the high 32-bit
maximum number of bytes to
log.

9: True

This Call Library Function node builds the structure TServerDiskLogConfig
and passes it to DscServerDiskLogConfigSet, which initiates a disk logging
session between an iDSC board specified by hDsc and a disk file specifies by
LogFile. The parameter BlockSize is provided for disk transfer optimization. The
default value is 8192.

If a full path is not given for the parameter LogFile, the log file resides in the default
directory specified in the Control Panel | Data Acquisition Processor | Disk I/O on the
server PC.

The disk logging sessions starts when DscStartAcquiring is invoked. Once it
starts, it continues until the number of bytes specified in Lowi64 and Highi64 has
been logged or until DscStopAcquiring or DscHandleClose is invoked on hDsc.

If the function succeeds, the return value is 1. If the function fails, the return value is
0.

MslDscFilterParametersSet

Input
Name
(Type)

Corresponding parameters in
TFilterParam and brief
descriptions Output

Pass-
throug
h

1: hDsc

(Integer)
--- 1: True

2: FilterIndex
(Integer)

--- 2: True

3 Name achName 3: True

Using the iDSC Board with LabVIEW 11

(String) Points to a null-terminated string
that specifies the name of the
filter.

4: FilterType
(Integer)

iFilterType
Specifies the type of the filter: 0
for lowpass, 1 for bandpass. The
default is lowpass..

4: True

5 Sharpness
(Integer)

iSharpness
Specifies the sharpness of the
filter.

5: True

6: CutoffFreqLow
(Double)

fCutoffFreqLow
Specifies the low cutoff
frequency of the filter.

6: True

7: CutoffSlopeLo
w
(Double)

fCutoffSlopeLow
Specifies the low cutoff slope of
the filter.

7: True

8: CutoffFreqHig
h
(Double)

fCutoffFreqHigh
Specifies the high cutoff
frequency of the filter.

8: True

9: CutoffSlopeHi
gh
(Double)

fCutoffSlopeHigh
Specifies the high cutoff slope of
the filter.

9: True

10: Attenuation
(Double)

fAttenuation
Specifies the attenuation of the
filter.

10: True

This Call Library Function node builds the structure TFilterParam and
passes it to DscFilterParametersSet, which sets the filter parameters associated
with a filter at index FilterIndex on an iDSC board specified by hDsc. Valid filter
indices are 0 through 7.

If the function succeeds, the return value is 1. If the function fails, the return value is
0.

12 Using the iDSC Board with LabVIEW

SubVIs Reference

This package provides several subVIs to make it easy to configure and cleanup iDSC
board communication. In LabVIEW if you select Show | Help from the Help menu,
and place the mouse cursor over the subVI, diagrams as shown below will appear. To
place a subVI onto a LabVIEW diagram:

1. Right click on the diagram.
2. Choose �Select a VI�.
3. Open DSC.LLB and select the desire subVI.

In the following subVIs, most input parameters are optional. If the input parameters
are missing, default values will be used.

iDSC Init

This subVI provides an easy way to configure an iDSC board. It allows the user to
access different boards, download DAPL and custom commands, and select a
previously saved iDSC board filter configuration.

iDSC Init has five inputs:
1. Custom Command list is a list containing names and size of custom

commands.
 String.
 Default is (None).

2. iDSC configuration file contains the filename of an iDSC board
configuration.
 String.
 Default is IDSC1.DSC.

3. Configuration Dialog Box Show determines whether the iDSC board
configuration dialog box is displayed.
 Boolean.
 Default is TRUE

4. iDSC Path is an UNC path specifies the target iDSC board to be opened.
 String.
 Default is \\.\Dap0.

Using the iDSC Board with LabVIEW 13

5. DAPL Commands contains DAPL commands for configuring an iDSC board
 String.
 Default is (None).

iDSC Init has three outputs:
1. iDSC handle Pass Through is the handle of the iDSC board.

 Integer.
2. Sample rate reports how fast the iDSC is acquiring data.

 Integer.
3. Number of channels reports the number of active channel.

 Integer.

iDSC Init performs the following operations:
1. Opens a handle to the iDSC board specified by iDSC Path with the function
DscHandleOpen.

2. Defines custom commands with DscDaplCCListSetA and enables downloading
with DscDaplCCDownloadSet if Custom Command list is not equal to
(None).

3. Defines DAPL commands with DscDaplTextSetA if DAPL Commands is not
equal to (None).

4. Attempts to load the specified iDSC board configuration file with
DscConfigRead, and defaults to the standard configuration.

5. If Show dialog box? input option is true, an iDSC board configuration dialog
box will be loaded with DscConfigDialogShow.

6. Saves the configuration to a file with DscConfigWrite after a prompt to the user
to replace an old file. If the file does not exist, it will be created. If no file name is
specified, the default file will be used.

7. Begins data acquisition with the function DscStartAcquiring.
8. Gets the sample rate with the function DscSampleRateGet.
9. Gets the active channels with the function DscPinEnabledGet, counts and

returns the number of active channels.

The inputs Custom Command list and DAPL commands normally are not used.
They can be used if data processing is desired.
If you are using more than one iDSC board, it generally is the best to make a copy of
iDSC Init, and provides an address to a target iDSC board and a configuration file if
there is any.

iDSC Read

This subVI gets one block of data from an iDSC board.

14 Using the iDSC Board with LabVIEW

iDSC Read has five inputs:
1. TimeOut is the maximum amount of time in milliseconds that the get operation

should complete. If it fails to complete in this amount of time, the service aborts
the operation.
 Integer.
 Default is 10000.

2. iDSC Handle specifies the handle to the target iDSC board. It has to be passed
by iDSC Init, or previously opened DscHandleOpen.
 Integer.
 Default is 0.

3. ValuesToRead specifies the number of data per channel should get for each
operation.
 Integer.
 Default is 500

4. Number of Channels is the number of active channel.
 Integer.
 Default is 1.

5. TimeWait is the maximum amount of time in milliseconds that the get operation
can be blocked waiting for data. If no data show up in that amount of time, the
service aborts the operation.
 Integer.
 Default is 10000.

iDSC Read has three outputs:
1. iDSC Handle Pass Through is the handle of the iDSC board being passed

through.
 Integer.

2. Data is a pointer to an array, which contains data from the iDSC board.
 Array pointer.

3. Return Code reports the result of the get operation. If the get operation is
succeeds, it contains the number of data bytes read. If the get operation fails, it
contains -1.
 Integer.

iDSC Read performs the following operations:
1. Builds and initializes an array for the required structure TBufferGet.
2. Builds and initializes a one-dimensional array for storing the returned data.

Using the iDSC Board with LabVIEW 15

3. By passing the arrays to the function DscBufferGetEx, iDSC Read gets data
from the iDSC board specifies by iDSC Handle.

4. Re-dimension the returned data array as a two-dimensional array with size M by
N, where M is ValuesToRead and N is Number of Channels.

iDSC Close

This subVI terminates the communication with the iDSC board.

iDSC Close has one input:
1. iDSC Handle specifies the handle to the target iDSC board. It has to be passed

by iDSC Init, or previously opened DscHandleOpen.
 Integer.
 Default is 0.

iDSC Close has no output:

iDSC Close performs the following operations:
1. Stops data acquisition on the iDSC board specified by iDSC Handle with the

function DscStopAcquiring.
2. Terminates the communication with the iDSC boards specified by iDSC Handle

with the function DscHandleClose.

iDSC

This subVI initiates a communication with an iDSC, reads one block of data, and
terminates the communication.

iDSC has one input:
1. ValuesToRead specifies how many data per channel should be get for each

operation.
 Integer.
 Default is 500

iDSC has four outputs:

16 Using the iDSC Board with LabVIEW

1. Return Code reports the result of the get data operation. If the get data
operation is succeeds, this variable contains the number of data bytes read. If the
get data operation fails, this variable contains -1.
 Integer.

2. Data is a pointer to an array, which contains data from the iDSC board.
 Array pointer.

3. Sample rate reports how fast the iDSC is acquiring data.
 Integer.

4. Number of channels reports the number of active channel.
 Integer.

iDSC performs the following operations:
1. Initiates a communication with iDSC Init subVI.
2. Reads a block of Number of Values To Read data with iDSC Read subVI.
3. Terminates the communication with iDSC Close subVI.

For example usage, please see App01.

iDSC MaSl

This sub-VI initiates a communication with two iDSC boards and synchronizes them
by setting master/slave properties.

iDSC MaSl has two inputs:
1. iDSC0 Path is an UNC path specifies the target iDSC board to be opened, and

it will be configured as a master board.
 String.
 Default is \\.\Dap0.

2. iDSC1 Path is an UNC path specifies the target iDSC board to be opened, and
it will be configured as a slave board for iDSC0 Path.
 String.
 Default is \\.\Dap1.

iDSC MaSl has two outputs:
1. iDSC0 Handle Pass Through is the handle of the master iDSC board.

 Integer.
2. iDSC1 Handle Pass Through is the handle of the slave iDSC board.

 Integer.

Using the iDSC Board with LabVIEW 17

iDSC MaSl performs the following operations:
1. Open handles to iDSC boards specified by iDSC0 Path and iDSC1 Path with

the function DscHandleOpen.
2. Connects the slave board at iDSC1 Path and the master board at iDSC0 Path

with DscMasterSet.

This subVI configures the boards in software only. The configuration for master and
slave must be done in hardware by using a special cable. For more information, please
see Master/Slave Configuration in the DSCIO Reference Manual.

For example usage, please see App08.

DiskLog

DiskLog has two inputs:
1. ValuesToLog specifies the amount of data will be logged from each active

channel.
 Double.
 Default is 100000 data per channel.

2. FileFlagAttributes specifies additional file attributes.
 Integer.
 Default is 1, which means normal attributes.

3. OpenFlags specifies how file opening is to be handled.
 Integer.
 Default is 2, which means always open an existing file. If the file does not exist, it
will be created.

4. iDSC Handle specifies the handle to the target iDSC board. It has to be passed by
iDSC Init, or previously opened DscHandleOpen.
 Integer.
 Default is 0.

5. DiskLogFlag specifies various logging options.
 Integer.
 Default is 1, which means log on the same side of the network connection as the
iDSC.

18 Using the iDSC Board with LabVIEW

6. LogFile specifies the name of the log file.
 String.
 Default is data.bin.

7. FileShareMode specifies the file share properties of the LogFile.
 Integer.
 Default is 1, which means the file can be read by another process.

8. BlockSize specifies the minimum amount of data, in bytes, to write to the
LogFile at one time.
 Integer.
 Default is 8192.

DiskLog has four outputs:
1. Return code is 1 if the server succeeds on setting the configuration for disk

logging. It is 0 if the server fails.
 Integer.

2. iDSC handle Pass Through is the handle of the iDSC board being passed
through.
 Integer.

3. Error Buffer contains the error message if it fails to configure for sever disk
logging.
 String.

4. Number of Values To Log indicates the amount of data will be logged to
LogFile. It is the product of number of active channels and ValuesToLog.
 Double.

DiskLog performs the following operations:
1. Converts ValuesToLog to total number of bytes to read by multiplying
ValuesToLog, number of active channels from DscPinEnabledCount, and two.

2. Calls the wrapper function MslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSetMslDscServerDiskLogConfigSet to initiate server
disk logging.

3. Sets the state of the server disk logging option with the function
DscServerDiskLogEnabledSet.

4. Returns the number of values will be logged for all channels in Number of
Values To Log.

The iDSC 1816 board has to be configured for server disk logging before start
acquiring data. So, a Disk Log subVI has to be called before DscStartAcquiring.

If a full path is not given for LogFile, the log file resides in the default directory
specified in the Control Panel | Data Acquisition Processor | Disk I/O on the server
PC.

Using the iDSC Board with LabVIEW 19

For example usage, please see App07 and App08.

Num Data

This subVI queries for the number of bytes being logged to a disk file by a server.

Num Data has one input:
1. iDSC Handle specifies the handle to the target iDSC board. It has to be passed by

iDSC Init, or previously opened DscHandleOpen.
 Integer.
 Default is 0.

Num Data has one outputs:
1. NumDataLogged specifies how many data have been logged by the server.

 Double.

Num Data performs the following operations:
1. Initializes a two-element data array.
2. Queries for the number of bytes being logged by a server with the function
DscServerDiskLogBytes.

3. Recovers the result and stores it in a DOUBLE.

This subVI queries for the number of bytes being logged to a disk file by a server.
Since the function DscServerDiskLogBytes returns a 64-bit integer, which is not
supported by LabVIEW, this subVI is created to interface between DSCIO and
LabVIEW. The results are stored in two 32-bit integers. The first and second elements
of i64Count represent the low and high 32-bit of the result respectively. The 64-bit
result can be recovered by performing the following calculation:

322 bit-32 high bit-32 low result bit-64 ×+=

The result of the calculation is stored in a DOUBLE in LabVIEW.

Get Error

This subVI gets the last error message that occurred in the DSCIO DLL.

20 Using the iDSC Board with LabVIEW

Get Error has no input:

Get Error has one outputs:
1. Error Buffer contains the error message.

 String.

Get Error performs the following operations:
1. Creates and initializes a buffer to store the error message.
2. Get the last error message with the function DscLastErrorTextGet.

This subVI gets the last error message occurred in the DSCIO DLL. An error occurs
in the DSCIO DLL when a function call fails. It should be called immediately after the
Call Library Function node of interest.

	Using the iDSC Board with LabVIEW
	Installation
	Creating an iDSC Board Application in LabVIEW
	Running the LabVIEW iDSC Board Examples
	App01 - BASIC
	App02 - GRAPH
	App03 - LOG
	App04 - LOGVW
	App05 - DaplFFT
	App06 - DaplCC
	App07 - Disk Logging (1 iDSC)
	App08 - Disk Logging (2 iDSC with synchronization)
	App09 – A Group of iDSC

	DLL Reference
	DSCIO DLL Function Reference
	MSLAPP DLL Function Reference
	Data Format
	MslDscServerDiskLogConfigSet
	MslDscFilterParametersSet

	SubVIs Reference
	iDSC Init
	iDSC Read
	iDSC Close
	iDSC
	iDSC MaSl
	DiskLog
	Num Data
	Get Error

