
Wave Synchronization Module
Command reference and application guide

Wave Synchronization Module:  
Command reference and application guide
Version 1.01

Microstar Laboratories, Data Acquisition Processor, DAP, xDAP, DAPstudio, and DAPview are trademarks of Microstar 
Laboratories, Inc.  Windows is a trademark of the Microsoft Corporation.

Copyright © 2014-2015, Microstar Laboratories, Inc.

All rights reserved. No part of this manual may be copied, reproduced, or translated to another language without prior written consent of 
Microstar Laboratories, Inc.

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http://www.mstarlabs.com

Part Number:  MSWSMOD101

1



Table of Contents
1.  Introduction......................................................................................................................................3
2.  Installation........................................................................................................................................4
3.  Application Examples.......................................................................................................................5

Application 1: Synchronizing to distribution power frequency ......................................................6
Application 2: Large-scale system measurements with multiple xDAPs ........................................8
Application 3: Polling for streamed data........................................................................................11
Application 4: Monitoring power frequency drift .........................................................................13

4.  Technology of Timing Signal Tracking..........................................................................................15
5.  Command Reference......................................................................................................................18
Appendix I.   Resampling Technology................................................................................................27

2



1. Introduction

Suppose you have set up an IEEE 1588 software system for your multi-station network. You have 
mapped out all of your timing signals relative to your centralized timing authority, so that you can 
know the time offsets between any station and any other with extreme precision. Now you are ready to 
take some well-synchronized measurements. Despite unpredictable networking lags, you can still tag 
all of your measurements with their exact time of capture.  But extending this scheme down to every 
individual load cell, thermocouple,  accelerometer, and so forth is a difficult and costly exercise.  

Sometimes it makes better sense to collect measurements for many channels synchronized to a local 
station clock, and leave it to the local collection station to coordinate timing with the rest of the 
network environment. This leaves more flexibility for deciding how to apply the shared local clock to 
coordinate the lower-level and less-expensive sensor devices.  It also leaves the local station more 
flexibility for how to independently coordinate the timing.  Here are three ways the local station might 
choose to synchronize its local process timing with the other devices in its network. 

• On an industrial scale, passage of time is often determined by counting  AC power system 
cycles, in the manner of a typical “electric wall clock.” This is not absolutely accurate, and the 
time resolution is modest, but the power grid is periodically corrected to keep excursions in 
frequency and phases bounded over time. All local stations stay locked to the common signal. 
This kind of solution can be feasible when keeping plant activity together is critical but short 
term timing drift away from the rest of the world does not matter. 

• A centralized, accurate, stable timing oscillator can provide a local time base. Measurements 
can then be associated with that oscillator to synchronize local activity. If further coordination 
with external networking is needed, the central station that generates the reference time base 
must enforce the alignment to the networked time standard.  

• A highly stable and accurate reference time base can be derived from a standardized timing 
receiver such as satellite GPS or an IRIG-B beacon. A precision tracking oscillator then derives 
and distributes an aligned timing signal to the local stations and devices that need it. 

All of these options are subject to the limitation that the timing signal rarely has waveforms or cycle 
rates usable for direct control of sampling: too slow, digital transitions not clean enough, etc.  

The WSM (Wave Synchronization Module) addresses cases in which a reference time signal has the 
form of a (nominally) fixed-frequency sine wave. The WSM allows xDAP hardware to perform its 
sampling in the ordinary way, using its highly configurable, very stable, but independent clock. The 
WSM processing then observes both the reference timing waveform and other measured signals 
together as data. The signal values can be mathematically associated with any phase locations relative 
to the timing signal waveform. This makes the data sets independent of the original sampling rate, and 
dependent only on the reference timing and the accuracy of tracking it. Data streams can then be 
evaluated at any desired locations, not restricted to the cycle rates provided by the external reference 
clock signal, or to the hardware sample rates of initial data capture.

3



2. Installation

To install the Wave Synchronization Module, run the “Data Acquisition Processor” applications from 
the Windows control panel. Go to the Modules tab. Click on DAPL 3000 in the display window. In the 
lower left, click the Add button. Leave the default options in the checkboxes on the left side. In the 
lower right, click the Browse button, and navigate in the tree dialog to locate your copy of the 
wsm.dlm module. When you click the Open button, you will be returned to the Modules page. Click 
OK. The module will be loaded to your xDAP system. In addition, its configuration will be noted in the 
Windows registry, and if you shut down Windows or your xDAP unit, the wsm.dlm module will be 
reloaded automatically at future restarts.
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3. Application Examples

This section describes some applications using the Wave Synchronization Module.
Each application described in this section has a corresponding DAPstudio configuration file. You can 
begin configuring new applications by connecting real signals, running  these applications to verify that 
they work, and then incrementally adapting them. Or if you prefer, you can use the DAPstudio Save 
DAPL option to export the configuration in a text script file form, which can then be modified or used 
directly within any software environment.
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Application 1: Synchronizing to distribution power frequency 

The goal is to measure voltage and current in the three phases of a Y-connected 3-phase power 
transformer. Current and voltage for each phase are measured simultaneously. Also, to facilitate 
analysis of phase imbalance, the voltage from the Y-connection point of the transformer to a common 
reference ground is also measured. (Current in the common-ground path must equal the sum of currents 
from the three phases, and it does not need to be measured.)  

A sampling interval with 400.0 samples per cycle is selected, producing a 24000 samples per second 
scan rate on each channel, yielding excellent time resolution, and allowing enough extra degrees of 
freedom for filters to improve data quality effectively.

Accurate measurements of  AC voltages and currents can be obtained from a sampled data set, but only 
when the analyzed data blocks exactly match the lengths of the power cycles. If the sampling rate is 
slightly off, there is a phase-dependent bias in the computed estimates, due to the fact that a fraction of 
a cycle is inadvertently included or excluded from the analysis. 

On its own, xDAP hardware can get close to the desired nominal frequency, but not exactly right. To 
get 400 samples per 1/60 second, the SCAN command interval must be 41.66666666 microseconds. 
With a resolution of 20 nanoseconds in specifying the scan interval,  the nearest available choices for 
the xDAP hardware are 41.660 or 41.680 microseconds. Depending on the choice, the number of 
samples collected per cycle will average too high or too low.  This is not random, and it doesn't take 
long to accumulate what appears to be a significant phase shift between sampled data set and the actual 
waveforms. Even more problematic, under relatively moderate conditions, the power grid frequency 
can routinely drift away from the ideal 60 Hz by 0.1% or more for short term, seriously compounding 
the data alignment problems and degrading the measurement quality. 

Synchronizing to the prevailing power line frequency, and analyzing exactly cycle-by-cycle, eliminates 
this bias.  Using the Time Base and Synchronization module and using one of the AC voltage phases as 
the timing reference signal, you can obtain exactly the number of samples you want per waveform 
cycle. 

Solution: Connect the 7 measurement channels to xDAP input signal lines that are sampled 
simultaneously. Pick one of the voltage channels as the reference phase providing the timing 
information. Pick a sampling rate 12.0 microseconds, so that there are plenty of samples for good time 
resolution.  Configure the WAVESCAN command to expect the 12.0 microsecond sampling interval 
and a 60.0 Hz timing reference frequency. The WAVESCAN command performs its timing analysis and 
places a stream of timing results into a data transfer pipe.  The TBRESAMP command can then use this 
timing information to determine where the sample locations are on all of the signal channels, equally 
spaced,  at the timing interval specified but aligned to the reference phase.  Note that if the system 
frequency drifts, so does your time reference, so there will be 400 equally-spaced samples along each 
waveform cycle regardless of how the frequency drifts.
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DAPL configuration:

idefine MslInput 
   channels 7      // Seven channels to measure
   set IP0 d0      // First measured channel, "Reference Phase" 
   set IP1 d2      
   set IP2 d4
   set IP3 d6
   set IP4 d8
   set IP5 d10
   set IP6 d12     // Last measured channel
   scan  12.0    
end

pipes  pTimeAnalysis  double

// Reference timer rate in cycles per second
constant  reffreq     double  =  60.0
// Hardware sample interval, as configured, microseconds
constant  smpinterval double  =  12.0
// Final sample interval desired, microseconds (based on reffreq)
constant  newinterval double  =  41.6666666666667

pdefine aligning
  // Analyze the timing reference signal
  WAVESCAN(IP0, smpinterval, reffreq, pTimeAnalysis)
  // Evaluate seven signals at the desired sample locations
  TBRESAMP(IPipes(0..6),7, pTimeAnalysis, newinterval, $BinOut)
end

See the  WVSApp1.dms application file for DAPstudio.
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Application 2: Large-scale system measurements with multiple xDAPs 

This example uses a common local time-base oscillator as a source for coordinating data capture on 
multiple xDAP stations – in this case, absolute alignment to an external world time standard does not 
matter.  A large airframe structure is monitored. There are 10 xDAP stations, each monitoring 30 
channels of vibration data from strain sensors.  The analysis must preserve frequencies from 0 to 2500 
Hz accurately, both in magnitude and phase on each channel, delivering data at 20000 samples/second 
aligned to the reference timing signal, for every signal, at every station. Alignment of sampling is 
critical to avoid artificial phase distortions. The local time-base oscillator generates a sinusoidal timing 
signal at 1000 Hz, high enough to give good timing resolution, but low enough to avoid signal 
propagation distortions along the timing cable.

The sampling rate is set at 100000 samples per second on each channel. Simple bypass terminations on 
each cable line eliminate frequencies at 100 kHz and above, so there is no exposure to aliasing and 
expensive anti-aliasing filters are unnecessary. The 100 samples per wave cycle for observing the 
sinusoidal timing oscillator  yields excellent time resolution and phase alignment.

The initial sampling rate is higher than the final desired 20000 samples per second. To avoid 
introducing new aliasing effects during the rate reduction, each signal channel (including the reference 
timing channel) is processed by a transversal (Finite Impulse Response) digital filter that preserves all 
frequencies up to 5000 Hz with extreme accuracy, and attenuates all frequencies above 15000 Hz to 
effectively zero. The data stream can then be decimated to a 20000 sample per second rate with no 
aliasing hazards.

The samples at 100000 samples per second are actually captured in four separate banks of 8 channels at 
2.5 microsecond intervals. The staggered 2.5 microsecond delays introduce a precise and predictable 
phase shift proportional to frequency. For the maximum 2500 Hz frequencies, there are  0.00000 
radians delay for the first bank, 0.03927 radians delay for the second bank, 0.07854 radians delay for 
the third bank, and 0.11781 radians delay at the fourth bank. These shifts can be corrected during later 
analysis, but we will apply an alternate approach that removes these delays at the time of data capture. 

Start-up timing causes a complication. There is no way to know when individual xDAP stations are 
started, and after that, when exactly each individual xDAP unit is actually commanded to run. So a 
special triggering strategy is applied. Every station is started, and runs continuously, but initially all 
data are discarded. A separate triggering signal is delivered to each xDAP station in addition to the 
regular timing signal. This triggering signal is normally near 0V, but is raised to approximately 5V 
when the central station is ready to begin collecting measurements. This rising edge of this signal is 
guaranteed to occur only after a rising-edge zero crossing on the AC timing wave. Each station begins 
analyzing data following this trigger event, eliminating ambiguity about which AC cycle is the first. 

  Solution: Each xDAP station watches 32 signal channels. One signal is the triggering signal and one 
signal is the timing waveform. The sampling and processing are started, monitoring data but discarding 
everything until the timing signal pulse arrives.  At this point, timing on each xDAP station aligns to 
the next timing waveform zero crossing and matches it in rate and phase. 

Raw data samples are first filtered to eliminate all of the undesirable high frequencies. Then filtered 
data streams are collected and adjusted by MTSFILT to remove the 2.5 microsecond delays between 
the 8-channel banks. The TBRESAMP command then aligns the data set to the reference clock, 
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decimating the data streams to the target 20000 samples per second rate.  

DAPL configuration:

idefine MslInput 
   channels 32
   set IP0 d0     // The timing sinusoid channel 
   set IP1 d1     // The triggering pulse channel
   set IP2 d2     // First of 30 vibration signal channels
   set IP3 d3
   . . .
   set IP30 d30
   set IP31 d31   // The last of the 30 vibration signal channels
   scan  10.0     // 10 microseconds cover 4 channel groups of 8
end

// Digital lowpass FIR filter design from DAPstudio
// Taps: 41, Scale: 4, Window: Kaiser with alpha=4.8
// Low Cutoff: 0.12  Transition: 0.12
vector vFilter word = (-12, -28, -40, -19, 64, 221, 413, 531, 
  415, -75, -957, -2029, -2842, -2778, -1248, 2059, 6963, 
  12732, 18215, 22158, 23593, 22158, 18215, 12732, 6963, 2059, 
  -1248, -2778, -2842, -2029, -957, -75, 415, 531, 413, 221, 
  64, -19, -40, -28, -12)

trigger  tBegin  mode=normal

pipes  pTiming   double    // Results of timing analysis
pipes  pRaw      word      // Intermediate unfiltered data 

pipes  pRef      word      // Separated signal channels
pipes  pTrig     word
pipes  pR1       word
pipes  pR2       word
   . . .
pipes  pR30      word

pipes  pF1       word      // Intermediate filtered data
pipes  pF2       word     
   . . .
pipes  pF30      word      // Last of 30 filtered signals
pipe   pMerged   word      // Reorganized data
pipe   pAligned  word      // Data aligned to reference clock

// Nominal sample interval for 100000 samples per second rate
constant  smpinterval double  =    10.0
// Reference timer rate, 1000 Hz
constant  reffreq double      =  1000.00
// Desired final 20000 sample/second rate, 50 microsecond interval
constant  newinterval double  =    50.00
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// Data processing
pdefine aligning
  // Wait for triggering pulse above 4V to retain raw data
  LIMIT(IPipe1,INSIDE,13107,32767,tBegin,INSIDE,13107,32767)
  WAIT(IPipe(0..31), tBegin, 0, pRaw)

  // Separate the raw signal channels for filtering
  SEPARATE(pRaw,  \
    pRef, pTrig, pR1,  pR2,  pR3,  pR4,  pR5,  pR6,  \
    pR7,  pR8,   pR9,  pR10, pR11, pR12, pR13, pR14, \
    pR15, pR16,  pR17, pR18, pR19, pR20, pR21, pR22, \
    pR23, pR24,  pR25, pR26, pR27, pR28, pR29, pR30)
   
  // Filter the raw measurement samples, preserving 0-5000 Hz
  FIRFILTER(pRaw1,vFilter,41,4,1,-1,pF1)
  FIRFILTER(pRaw2,vFilter,41,4,1,-1,pF2)
  . . .
  FIRFILTER(pRaw30,vFilter,41,4,1,-1,pF30)

  // Reorganize channels in groups as sampled simultaneously
  MERGE( \
    pRef,  pF1,  pF3,  pF5,  pF7,  pF9,  pF11, pF13, \
    pTrig, pF2,  pF4,  pF6,  pF8,  pF10, pF12, pF14, \
    pF15,  pF17, pF19, pF21, pF23, pF25, pF27, pF29, \
    pF16,  pF18, pF20, pF22, pF24, pF26, pF28, pF30, \
      pMerged )

  // Cancel the 2.5 microsecond delays between channel banks
  MTSFILT(pMerged,32,8,  1,  pAligned)

  // Analyze the timing reference waveform
  WAVESCAN(pRef, smpinterval, reffreq, pTiming)

  // Decimate and time-align the data channels to final rate,
  // and send results to host system
  TBRESAMP(pAligned,32, pTiming, newinteval, $BinOut)
end

See the  WVSApp2.dms application file for DAPstudio.
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Application 3: Polling for streamed data

This application uses an xDAP system to collect streaming data. The central station wants to collect 
data for a 500-point FFT power spectrum analysis every second. The central station does not have 
resources for performing the DSP transform calculations, and expects these to be already completed in 
the delivered data. A data block of spectrum results is expected immediately after sending out polling 
message once per second.  

The central station and the xDAP, operating on independent clocks, might have a slightly different idea 
about what the 1.0 polling interval is, a little longer or a little shorter than the nominal 1.0 seconds. 
Suppose that the xDAP happens to be operating a few parts per million faster than the nominal once-
per-second rate of the central station. Over the course of time, the xDAP will collect excess samples 
beyond those needed, gradually accumulating a backlog of old history in buffer memory. As the 
collected measurement values backlog in buffer memory, the delivered results start to lag behind actual 
time in a very mysterious way. 

Or take the opposite case. The xDAP happens to be operating a few parts per million slower than the 
nominal once-per-second rate of the central station. The xDAP can't send data that is doesn't have, 
leading eventually to a missed response to a polling request. 

The problems arise because the system polling and sampling operate with separate clocks – the 
definition of one second is slightly different at the two locations. If the rates of issuing polling requests 
and producing responses can be made to stay aligned to the same reference rate over time, rate 
inconsistency problems do not occur. Since extremely high precision and resolution are not necessary 
for this, the shared timing can be based on the AC waveform for the common power distribution 
supplying both systems.

The sampling rate necessary to track the power waveforms accurately is much higher than the data rate 
needed for the FFT analysis. This is not a problem – DAPL system processing can decimate the data  to 
obtain the desired rate for the analysis. This is done in a way that avoids aliasing and preserves the 
validity and accuracy in the reported spectrum terms. Then, an FFT analysis is performed on 1000-term 
blocks. The power spectrum results are redundant in the second half of a 1000-term transform, so the 
extraneous terms are discarded to yield the desired 500-term power spectrum spanning from 0 to 500 
Hz.  

Solution.  Configure the xDAP system to capture data at approximately 6000 samples per second, 
based on the xDAP local clock. The AC supply waveform and the measured signal are captured 
simultaneously. At this rate, there are about 100 samples per AC waveform cycle, yielding plenty of 
data for an accurate timing analysis. Apply a timing analysis to the AC waveform cycle. Using that 
timing analysis, resample the waveform signal so that the 100 samples per waveform exactly align to 
the waveforms. Apply digital filtering to reduce the data rate from 6000 samples per second to 2000 
samples per second without any aliasing damage. This filtering preserves the frequency band from 0 to 
500 Hz perfectly. Perform a 2000 point FFT power spectrum analysis for each second of data. Discard 
all attenuated and redundant frequency bands, and report the required 500 accurate power spectrum 
terms to the host as soon as the work is completed, so the information is ready for the host to deliver to 
the central data collection system when the next polling message arrives.  
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DAPL configuration:

idefine MslInput 
   channels 2
   set IP0 d0     // The signal to be measured and analyzed 
   set IP1 d1     // The observations of the 60 Hz waveform
   scan  166      // Roughly 6000 samples per second, noncritical
end

pipes  pTiming   double    // Results of timing analysis
pipes  pAligned  word      // Intermediate full-rate data 
pipes  pReduced  word      // Reduced rate data
pipes  pPowSpect float     // Separated signal channels
pipes  p500Hz    float     // Desired power spectrum data

// Specified sampling interval, microseconds 
constant  smpinterval double  =    166.00
// Reference timer rate, 60 Hz
constant  reffreq double      =     60.00
// Desired microsecond sample time interval, 2000 samples/second 
constant  newinterval double  =    500.00

// Data processing
pdefine powerpoll
  // Analyze the 60 Hz reference waveform
  WAVESCAN(IPipe1, smpinterval, reffreq, pTiming)
  
  // Align signal measurement stream to reference timing 
  TBRESAMP(IPipe0,1, pTiming, newinterval, pAligned)

  // Use a decimating lowpass filter to safely reduce the
  // data rate to 2000 aligned samples/sec without aliasing 
  FIRLOWPASS(pAligned,3,pReduced)

  // Perform a 2000 sample FFT analysis, obtaining a 1000 term
  // power spectrum block.
  MIXRFFT(2000,HAMMING,pReduced,HALF,POWER,pPowSpect)

  // Retain only the first 500 (accurate) terms from each block
  SKIP(pPowSpect, 0,500,500, p500Hz);
  MERGE(p500Hz,$BinOut)
end

See the  WVSApp3.dms application file for DAPstudio.
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Application 4: Monitoring power frequency drift 

This application reverses the normal assumptions.  Usually, when you have a time base signal, it is a 
trusted resource, calibrated to a high degree of accuracy according to an even better time reference. But 
when you are using a power system waveform for timing, the frequency can drift, and for the short 
term it is much less steady than the sampling clock hardware. Short term frequency drift can be 
observed in the number of samples at the original sampling rate needed to span each observed reference 
wave cycle. 

In this application, the xDAP internal sampling is deemed more accurate and stable than the power 
system frequency observed. Assuming a reversal of roles, the sampling clock is treated as the trusted 
reference. The timing analysis determines how much the observed sine wave timing signal deviates 
from the parameters specified for the WAVESCAN command processing, based on the sampling clock, 
and reports this information in a separate output stream. 

Solution: The time reference signal to be tested is derived from an  AC distribution main at the 
European grid frequency of 50 Hz. The sampling is performed at intervals of 266.0 microseconds per 
sample.  This results in approximately 75 samples per waveform cycle. WAVESCAN command 
accounts for all of the fractions, so the exact value of the sampling interval doesn't matter. The 
configuration specifies a second, optional output pipe where the WAVESCAN command can save its 
analysis results.  The normal timing analysis stream is mandatory, but it can be discarded and ignored. 
The alternate output data consists of three values per observed cycle, and the field of interest is the 
second term, the current operating frequency relative to the sampling clock.  If the frequency indicated 
in the output data exactly matches the reference signal nominal value as specified by the WAVESCAN 
task parameter, the power frequency currently matches the nominal 50 Hz exactly. If the reported 
values are lower or higher, this indicates that the reference frequency seems to be correspondingly 
lower or higher relative to the sampling which is deemed steady.  Output values are reported in float 
data type, with units of Hz. 

The analysis represents all of the frequency drift as if it were due to the power system frequency. 
Actually, a few parts per million of frequency shift could be due to frequency error in the crystal-
controlled sampling clock rate. There is no way to determine the cause of this discrepancy from the 
data samples.
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DAPL configuration:

idefine MslInput 
   channels 1
   set ipipe0   d0    // Waveform to check
   time     266    
end 

pipes  pTimeAnalysis  double
pipes  pWaveAnalysis  double
pipes  pFreq          double
pipes  pFloatFreq     float

// Reference timer rate in cycles per second
constant  reffreq     double  =  60.0
// Hardware sample interval, as configured, microseconds
constant  smpinterval double  =  266.0

pdefine freqtest
  // Analyze the timing reference signal
  WAVESCAN(IP0, smpinterval, reffreq, pTimeAnalysis, pWaveAnalysis)
  // We don't need the usual timing analysis data
  DISCARD(pTimeAnalysis)
  // Select the frequency field to send to the host in float type
  SKIP(pWaveAnalysis, 1,1,2, pFreq)
  pFloatFreq = pFreq
  MERGE(pFloatFreq, $Binout)
end

See the  WVSApp4.dms application file for DAPstudio.
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4. Technology of Timing Signal Tracking

Sampling and external reference signals
An xDAP system provides many configurable sampling options.  To guarantee that the timing is 
accurate in all of these configurations, processing is governed by an on-board, crystal-controlled digital 
oscillator operating at a single fixed rate. To give the illusion of  “configurable sample timing” a very 
fast timer rate is used. All configurable hardware timing intervals are then exact multiples of this 
hardware interval.  Once started, timing intervals for data acquisition action remains rigidly fixed. We 
call the xDAP's user-adjustable sample timing period the sampling time interval. It is configured by 
specifying the sampling SCAN interval. Thus, sampling activity is determined by the sampler timing 
clock, with precise and equal time intervals between samples as determined by the sampler clock and 
used according to the scan configuration. 

When you have any independent external time base signal, you cannot depend that it will start aligned 
with the xDAP internal sampling clock, and you cannot depend that the external rate will match the 
sampling clock timer exactly over an extended time. (Even  international timing standards based on an 
atomic clock or on planetary rotation diverge from each other given sufficient time.) 

For the particular case that the external time base signal is a sinusoidal waveform, there is rich 
frequency and phase information, but the time base signal itself is unsuitable for direct digital control 
of sampling processes.  xDAP processing can observe the timing, and account for what happens 
sample-by-sample in observations of the timing reference signal. Then locations in other sampled data 
channels captured at the same time can be associated with locations along the timing wave. The 
association is represented as a timing model or timing information stream. The timing model tracks the 
amplitude, phase, and frequency of the reference signal. Once this relationship is known, it can be used 
to guide other kinds of data analysis on-the-fly.   

Fractional-sample intervals

If a perfect relationship existed between the sampling clock and observed waveform cycles, each cycle 
could align in such a way that each reference-signal cycle begins exactly at a zero crossing boundary 
and exactly at a captured sample – and the reference waveform would show phase 0.000 and value 
0.000 at this point. In reality, the true waveform zero crossing points are expected to occur at some 
intermediate points between the ones where the hardware timing clock captures samples. 

Using the combined information spanning the total shape of the waveform, which is known to be 
sinusoidal, an interpolation analysis can estimate a best match for the entire cycle. This makes the 
analysis impervious to small random variations,  typically accurate to about 1/1000 of a sampling time 
interval. 
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Limitations of accuracy
To the extent that sampling is not perfect, and the reference timing waveform is not a perfect sine wave, 
small variations will result in tracking that is not quite at the theoretical  ideal. The tracking process 
requires time to distinguish the effects of a phase shift from the effects of a frequency shift. Random 
real noise and tiny numerical errors result in small displacements between the model and actual 
waveform.

Particularly when the reference timing is derived from an AC power source, it is likely that there will 
be harmonic distortions in the waveform shape. Even in signals that appear very clean, amplitudes of 
these distortion components might total 5% to 10% of the fundamental reference signal frequency. 
Harmonics shift the apparent locations of waveform zero crossings, interfering with phase estimates, 
thus interfering with the process of locating the waveforms. The distortion of wave peaks influences 
amplitude estimates. Distortion also causes local rate-of-rise abnormalities that interfere with 
frequency estimates. 

Filtering is applied to reject these disturbances as much as possible, but the cancellation is not perfect. 
Thus you should not depend on absolute accuracy. With a clean reference signal, the errors in its 
parameter tracking will typically approach 1 part in 100000 (i.e., 5 fully trustworthy digits), and could 
be better.  There is zero long term drift. When you have less clean signals, you will need to test for how 
much the signal noise and distortions influence local tracking accuracy in your special situation. 

Frequency resolution
To get adequate localization of the waveform, your sampling rate should allow for 50 or more samples 
per reference waveform cycle.  Excessive numbers of samples per waveform is not a problem, and if 
that situation occurs, the very high data rates are reduced internally for processing efficiency. 

Resampling
Timing analysis will establish the correspondence between positions relative to the observed time base 
and samples captured by the on-board digitizer. Resampling by a separate task can apply that timing 
information to deliver sample values aligned with the reference time base. This could occur at 
fractional sample positions between the positions captured on the hardware sampling clock.

If the hardware sampling rate happens to be an exact integer multiple of the desired reference-based 
rate, and if the sampling and reference clocks are somehow phase-aligned, you have the ideal situation. 
All samples you want coincide with samples that the hardware captures. But in general, slight rate and 
“phase” discrepancies will mean that there is no perfect alignment of sampling and evaluation 
locations. This leads to the problem of  signal reconstruction or interpolation. Fortunately, this is one 
of the best understood aspects of digital signal processing. Signal sample values can be calculated to a 
high degree of accuracy at locations between previously measured sample locations. The accuracy of 
this reconstruction is good enough that you can't distinguish signal reconstruction errors from the errors 
that occur anyway when continuous analog measurements are rounded to the nearest bit values by 
digitizer hardware. For more information about the DSP calculations, see Appendix A. 
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Once resampling capabilities are available, it is no longer necessary for sample locations to be dictated 
by complicated and temperamental sample-clocking devices such as clock multipliers, digital counters 
and phase-locked loops. The computations are fast. The sample values that you get in the resampled 
stream will be indistinguishable from samples synchronized by hardware to the external timing signal. 

 

Power analysis
The timing analysis produces estimates of amplitude and frequency as a side effect. This information 
can be reported optionally. Since the waveform tracking is quite accurate, a power analysis based on 
that waveform model can be quite accurate as well. 
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5. Command Reference

This section describes details of the individual commands. There is only one command, WAVESCAN, 
provided by the Wave Synchronization Module (wsm.dlm). This command is used so often with the 
time base resampling command TBRESAMP from the Time Base Resampling Module (tbrsm.dlm) 
that the command description for that command is repeated here.  

18



Processing Command
Module WSM :: WAVESCAN
Perform a timing analysis and optionally report signal parameters of a sinusoidal waveform.

Syntax
WAVESCAN( REFIN, SMPTIME, REFFREQ, PTIMING [, PPROPS] ) 

Parameters
REFIN 

Single pipe with input samples captured from a sinusoidal reference timing signal 
WORD PIPE

SMPTIME 
Sampling scan interval used to digitize timing signal, microseconds 
FLOAT CONSTANT |  DOUBLE CONSTANT  

REFFREQ 
Nominal frequency of the reference timing waveform in Hertz 
FLOAT CONSTANT |  DOUBLE CONSTANT  

PTIMING
Pipe receiving the output timing analysis information to be used by other tasks
DOUBLE PIPE

PPROPS
Optional cycle-by-cycle report of sine wave parameters of reference signal
DOUBLE PIPE

Description
A WAVESCAN task analyzes reference data from samples of a clean, high-level sinusoidal voltage 
signal received from pipe REFIN.  The SMPTIME  parameter specifies the sampling time interval of 
the timing data stream, in units of microseconds per sample, as might appear on a  SCAN command 
line. The REFFREQ  parameter specifies the reference frequency of the timing source in Hz. 
Specifications for both the sampling rate and the timing signal frequency should be reasonably 
accurate. A significant discrepancy between specified and actual rates will be diagnosed as an error and 
cause shutdown of the task before it can fully start.  

For best results, the timing signal must be a low-distortion, low-impedance sinusoidal wave spanning a 
significant portion of the converter full signal range. Full tracking accuracy requires a highly accurate 
and clean waveform signal, as one would expect from an instrument grade signal source.  Though less 
accurate, typically within a few thousandths of a radian, tracking also works with signals that drift in 
amplitude, frequency, and harmonic distortion, such as a typical AC power distribution voltage 
waveform. Tracking is typically robust to short term temporary faults, such as temporary cable removal 
or “switching events” disturbances that are typical of power systems. However, under severe, rapid-
fire, repeated faults, it is possible to “completely lose” phase alignment between the sample stream and 
timing reference. If your timing signal has been subjected to severe disturbances, it is recommended 
that you stop the system and then restart it to allow accurate phase realignment. If you cannot do that, 
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another option is to resample your time base signal, and perform a single-frequency DFT analysis on 
that signal, to measure its phase shift. This can allow you to correct your data sets for the permanent 
phase shift at a later time.    

Output timing information is reported once per waveform cycle in the  PTIMING output pipe.  The 
values placed into the PTIMING output pipe are in groups of 3, and do not have a defined 
interpretation. However, any time the second of the three terms is nonzero and negative, that indicates 
problems with signal quality or loss of synchronization.  

The optional PPROPS output pipe can be used to deliver information about the waveform observed on 
the timing input channel. This is, in effect, a presentation of waveform information maintained in the 
internal waveform tracking model. A set of three PPROPS  properties will be sent to the  PPROPS pipe 
for each cycle of the timing reference signal.  The returned fields are in a double data type, and 
consist of the following in sequence:

1. Amplitude estimate. Units are “converter ticks” corresponding to the sampled signals as 
originally received, but in a mixed fractional form. This is the amplitude of the fundamental 
frequency peak, excluding waveforms, noise, harmonics, etc. 

2. Frequency estimate. The frequency is expressed in Hertz. Normally, the signal is considered to 
be a perfect frequency reference, but this frequency estimate turns that on its head and assumes 
that the sampling rate is perfect, reporting what the external clock signal appears to be relative 
to that. If the reference frequency is known to be highly accurate, any changes can be a useful 
indication of drift in the sampling clock rate.

3. Cumulative phase discrepancy. In effect, this is the integral over time of the difference between 
observed and nominal frequencies. This value would be 0.0 if sampling and reference clock 
were in perfect agreement. This value gradually increases when the observed frequency in the 
wave data is faster than expected, relative to the nominal sampling rate, and gradually decreases 
when the observed frequency in the wave data is slower than expected, relative to the nominal 
sampling rate. This can be meaningful if sampling is slaved to an absolute timing reference; it 
would then indicate net phase gain or loss in the timing signal relative to the absolute reference.

When first started, the WAVESCAN command requires a number of samples to estimate the 
waveform's properties and calculate a reasonable initial state for the wave tracking. Tracking converges 
relatively fast, but it will take some amount of time to converge to full accuracy. If you need full 
accuracy from the outset, start the WAVESCAN processing of signals early, allow time for settling, and 
then use triggering features to select data from the aligned signals. 

If you have a signal generator that is synchronized to an IEEE 1588 network timing, the generator can 
establish time-alignment to the network, and then the xDAP processing can establish time-alignment of 
its data streams to the generator. In effect, this aligns data sets to the common network time base. 
However, keep in mind that this alignment is not the same thing as synchronization in real time. For 
example, data streams captured on multiple channels at 50000 samples per second, using any kind of 
devices and acquisition equipment, are highly unlikely to be delivered without large data buffering and 
transfer delays. On some networks, the time of transfer is not deterministic. The moment of capture can 
be resolved and tagged with a high degree of accuracy, but it is not knowable exactly when information 
will arrive at other locations in the network in real time. 
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Examples
WAVESCAN( IPipe6, 20.0, 100.0, pTime ) 

Analyze samples of a reference sine wave signal produced by a precision waveform generator and 
delivered via the input channel pipe Ipipe6. The sampling rate for the measurements is 20 
microseconds per sample in each channel. The reference signal is 100 Hz. The results of the timing 
analysis are placed into pipe  pTime.    

WAVESCAN( IPipe6, 83.34, 60.0, pTime )
TBRESAMP( Ipipe(2), 1, pTime, 300.00, pResampled )

The processing is intended to track the nominal 60 Hz power frequency. The power waveform is 
reduced to a safe low level by a step-down transformer, and observed on channel  Ipipe6 at a nominal 
83.34 microsecond-per-sample scan rate. The WAVESCAN command monitors the 60 Hz reference wave 
with roughly 200 samples per cycle captured along the reference 60 Hz signal. Timing information 
goes into the pTime pipe. The TBRESAMP task then accesses the signals from channels Ipipe2 to 
Ipipe5 at exactly 40 samples per 60 Hz cycle, locked to the reference rate, placing the resampled 
streams in the pResampled pipe.  Blocks of 1000 resampled values from each channel will be very 
well suited for a spectrum analysis, showing the first 20 power system harmonics, at intervals of 25 
frequency steps between harmonics. Because of almost perfect alignment, no windowing is required for 
follow-up harmonic analysis.    

WAVESCAN( IPipe0, 160.0, 60.0, pTime, pWaveParms )
SKIP( pWaveParms, 0, 1, 2, pVoltage )
AVERAGE( pVoltage, 6, pDisplay ) 

Timing information is captured from one 60-Hz reference voltage phase, observed in the input channel 
pipe IPipe0.  Measured at 160.0 microsecond time intervals, this provides approximately 104.16 
samples per wave cycle – this is plenty to give good time resolution, and the exact number of samples 
per cycle makes no difference. Timing information is delivered  into pipe pTime for other tasks to use. 
Waveform parameter information  is issued once per timing cycle to the supplementary output pipe 
pWaveParms.  Amplitude is of special interest, so this value is selected using a SKIP command. The 
stream of amplitude values is reduced using an AVERAGE command with data processed in groups of 
6, producing one result per 1/10 second intervals in the pipe pDisplay. This is a useful rate for 
directly updating a graphical instrument display. 
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Processing Command
Module WSM :: WAVEREGEN
Reconstruct an ideal waveform sample stream that tracks the reference timing signal.

Syntax
WAVEREGEN( PTIMIN, [PPROPS,] PREGEN )  
WAVEREGEN( PTIMIN, AMPLITUDE, PREGEN )  

Parameters
PTIMING

Pipe of timing analysis information received from a WAVESCAN task
DOUBLE PIPE

PPROPS
Optional wave properties received from a WAVESCAN task
DOUBLE PIPE

AMPLITUDE
Optional constant amplitude specification for the output wave 
WORD CONSTANT  

PREGEN
Pipe receiving the regenerated pure sine wave signal
DOUBLE PIPE

Description
A WAVEREGEN task synthesizes a mathematically pure sine wave signal synchronized to the timing 
information from the PTIMING  pipe, as produced by a separate WAVESCAN task. The generated data 
are placed into the PREGEN  output pipe, where they can be used as a cleaned signal for retransmission, 
as a reference signal for software triggering, as displayable data to compare to the original timing 
signal, or for various other purposes. The phase of the generated wave is locked to the fundamental 
frequency of the reference waveform, so depending on the nature of the harmonic distortions, the zero-
crossing locations of the regenerated wave and the original wave might not align exactly. The 
regenerated sample stream corresponds sample-for-sample with the samples of the original reference 
signal analyzed by the WAVESCAN task.   

The  PTIMING  pipe is mandatory. This pipe provides all of the necessary phase, frequency, and 
alignment information from a separate timing analysis.  

The desired amplitude of the output signal can be specified using one of the following optional 
parameters:

• A PPROPS  pipe, as produced by the same WAVESCAN task that produced the timing 
information. This amplitude is dynamically estimated to track the amplitude of the fundamental 
frequency of the timing signal, typically within about 0.01% of the true amplitude of the 
fundamental component. Because of harmonic distortions, the peaks might not match the peak 
levels in the original timing signal.
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• A constant  AMPLITUDE  value, in digitizer units, range 1 to 32767.  The output signal is 
appropriately scaled to have the specified arbitrary peak. 

If neither parameter is specified, an arbitrary amplitude of approximately half full range is assumed.  

Examples
WAVEREGEN( pTiming, pParameters, pRegen )
pNoise = pRefSignal – pRegen 
RMS( pNoise, 1000, pRMS ) 

A WAVEREGEN task is used to rebuild a mathematically ideal waveform matching the fundamental 
frequency in the reference timing signal. The timing analysis pTiming pipe and waveform property 
pParameters pipe provide the data produced by a separate WAVESCAN task.  Differences between the 
regenerated ideal signal pRegen and the original timing signal  pRefSignal  are calculated by a DAPL 
expression task and placed into the pNoise stream.  If the original signal is perfect, and 
synchronization is perfect, all of the differences should be zero. The DAPL system's RMS task 
calculates the root-mean-squared values of the actual differences, over blocks of 1000 samples. An 
excessively large number will indicate a signal problem such as distortion or noise interference. 
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Processing Command
Module TBRSM :: TBRESAMP
Obtain samples aligned to an external time base for multiple channels .

Syntax
TBRESAMP( INSTREAM, NCHAN, PTIMING, RSINTERVAL, [METHOD,] OUTSTREAM )

Parameters
INSTREAM 

Pipe carrying samples from one or more data channels 
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

NCHAN 
Number of data channels in INSTREAM
WORD CONSTANT 

PTIMING 
Pipe providing the results of a timing analysis calculated separately
DOUBLE  PIPE 

RSINTERVAL 
Desired new sample interval expressed in microsecond units
FLOAT CONSTANT |  DOUBLE CONSTANT 

METHOD 
Option to override method of calculation 
KEYWORD, one of:  NONE, FAST, ACCURATE

OUTSTREAM
Pipe receiving the resampled data after processing
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

Description
A TBRESAMP task performs a resampling analysis based on timing analysis of a time base signal, 
allowing samples originally captured by hardware clocking to be transformed into equivalent, equally-
spaced samples at an adjusted rate referenced to the time base. This results in samples at a very 
precisely known rate, at very precisely known times that do not drift relative to a fixed time-base 
standard.

Samples of data from multiple channels, with one sample for each of NCHAN data channels in each 
group, are provided by pipe INSTREAM. The PTIMING pipe provides the results of a separate timing 
analysis that establishes a best-fit correspondence between the original input data samples and the time 
base rate.  Using this information, samples are located in the data stream with RSINTERVAL 
microseconds between samples in each channel, based on the time standard. The value of 
RSINTERVAL corresponds to the time interval you would specify on a SCAN statement for capturing 
data based on the hardware clock. Calculations for each signal channel are processed separately, but the 
results preserve the multiplexed-data organization. The resulting sample values are placed into the 
OUTSTREAM data pipe, at the new sample rate.
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The data types of the input and output pipes must match. 

The data rate originally used to sample the input signals is arbitrary, but in a typical configuration the 
sampling is relatively fast (for good time resolution) and the aligned data are relatively slower (for 
efficient representation of signal information without too much redundancy). Both rates are typically 
much higher than the timing interval rate of the time base signal.  

Nothing forces alignment between the reference timing hardware and the crystal oscillator that drives 
sampling. As a result, sample locations as captured by the hardware do not in general align perfectly to 
the time-locations desired for the resampled data. Evaluation of samples at resampling positions is 
closely related to the DSP problem of accurate signal interpolation. The resampling uses a balanced 
interpolation, based on an equal time-horizon of older and newer samples surrounding each position of 
evaluation, and has an accuracy of approximately 15 bits.

At the end of your data collection run, the resampling process typically needs some extra raw data 
beyond the final point of evaluation that you need to retain for your resampled output stream. Collect 
more raw input samples than you would otherwise need, to allow this extra margin. 

The optional METHOD parameter is one of the following keyword strings, in all capital letters but 
without any quote characters.

• FAST This option is appropriate for most applications, particularly those having some 
observable random noise, fast processing rates, or signal processing such as filtering. Spectrum 
analysis results are typically very good.  In theory, a small “timing jitter” on roughly the order 
of 1/1000 sample can exist in locating resample positions, making measurements appear slightly 
"noisy". In practice, you will find it difficult to see any effects in your results, as real signal 
noise masks the artificial noise. 

• ACCURATE  This is the best option for very precise, very clean signals, to obtain the best 
possible reconstruction of every sample, particularly at very high frequencies. There is almost 
no timing jitter effect – too small to detect. This option requires roughly twice the computation 
of the FAST method, using a two-stage interpolation. If you have a surplus of CPU capacity, 
there is no harm from using this method even if you don't otherwise need it. 

• NONE  If your hardware sampling rate is already very much faster than the rate of your 
final resampled data, the abundant data already provides plenty of resolution, and additional 
calculations within a tiny fraction of a sample position would be wasted. You can use this option 
to bypass unnecessary calculations, and select the closest sample as produced directly by the 
hardware sampler.  This is extremely efficient, but almost always produces some visible jitter 
“noise effects” in signals. 

If you omit the METHOD parameter, you will get the FAST option by default.

Some additional considerations:

1. For best results, the frequencies present in every channel should be band-limited to below 40% 
of the Nyquist frequency (at least 5 samples captured per cycle).  The resampling is somewhat 
analogous to fitting a smooth curve to the data, and then evaluating along the curve. If the input 
data set is not smooth, the meaning of the curve fitting operation is unclear.  Violating this 
guideline produces results similar to partial lowpass noise filtering, altering the data but in a 
way that is sometimes beneficial. If your initial data set is not suitably band-limited, it is likely 
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that you are already subject to aliasing problems in your data sets, even before you apply any 
TBRESAMP processing.

2. Significantly lowering the sampling rate using  TBRESAMP command can introduce the same 
kinds of aliasing effects as any undersampling of a signal. The TBRESAMP command has no 
defenses against aliasing. If you need very large rate reductions, consider applying  anti-alias 
filtering operations such as FIRLOWPASS, or the Anti-Aliasing Multichannel Module for the 
rate reductions.

3. If subjected to abrupt steps (which would violate the bandwidth condition above), the 
interpolation process exhibits a transient behavior similar to a frequency-selective digital filter 
in a neighborhood of the discontinuity. Because the interpolation is balanced forward and 
backward in time, and applied to data in a buffer, the transient can appear to have a counter-
intuitive "before the disturbance arrived" behavior.

4. The timing alignment depends on continuous sampling starting from sample 0. Burst mode 
processing, in which sampling is physically started and stopped, typically does not work well, 
carrying stale sample values in filtering buffers from distant previous operations.

Examples

CONSTANT  Newinterval double = 166.6666666666
TBRESAMP(IPipe(0..5), 6, pTiming, 6000.0, pAligned)

Read voltage and current values for a 3-phase power transformer, from the six input sample pipe 
channels 0 through 5. The timing analysis results from a separate IRIGSCAN command are routed into 
this command via pipe pTiming. The power system operates at the North American 60 Hz frequency, 
so to obtain a new sampling rate 6000 samples per second, the time interval between samples at the 
new rate is 166.6666666666 microseconds. This aligns the data set to power system rates and can 
represent harmonic frequencies up to the 50th.  Results are delivered to the pAligned data pipe.

TBRESAMP(IPipe(0..7), 8, pTiming, 50.0, ACCURATE, pStream)
SKIP(pStream, 0, 800, 159200, pSelected)

Simulate burst activity aligned to time base intervals.  Blocks of representative data are collected from 
all channels once for each 1-second cycle, to be transferred via a network for centralized logging. 8 
sampled input channels are provided by Ipipe(0..7). The timing information, from analysis of a 
precision digital oscillator operating at 400 cycles per second, is routed to the TBRESAMP processing 
via pipe pTiming.  The TBRESAMP processing delivers 20000 samples per per second into each 
channel, at intervals of 50.0 microseconds, producing 160000 samples per second composite that are 
sent to the pStream data pipe. Exceptional accuracy is required for the calculations, so the 
ACCURATE processing override is specified. 

For each channel, the SKIP processing takes 100 samples for every group of 20000 samples in each 
channel  –  retaining 800 values out for each 160000 samples it receives.  Because of the alignment of 
rates, the SKIP command processing delivers each short burst of data at the beginning of each 1-
second time base interval.  The selected data are placed into the pSelected data pipe. 

26



Appendix I.   Resampling Technology

What is resampling?
Resampling is the application of well-established DSP techniques to convert a stream of samples, 
captured under control of one timing clock, into another stream of samples referred to a different 
timing rate. You can think of resampling as accurately reconstructing the continuous signal from the 
available samples, and then selecting a new set of sample positions along this reconstructed signal. 
Resampling is closely related to the mathematical problem of numerical interpolation. 
Resampling is widely used in digital music recording, synthesis, and playback. It has been much less 
commonly used for test and measurement applications, but it is no less valid for these. 

When is resampling applicable?
Resampling is appropriate when there is a secondary timing reference, and you want samples aligned to 
that time reference, rather than the original sampling clock where measurements were captured. 

How are resampled values computed? 

The resampling calculations are very similar to the calculations that would be done to interpolate 
between two known points along a straight line segment. For the case of interpolating along a 
continuously varying signal, many known points (time-sample pairs) are used instead of just two. And 
the interpolation curve is a higher-order curve, not a straight line. 

It is not immediately obvious how to reconstruct a signal with continuously varying curvature at any 
arbitrary location from discrete samples. However, the Whittaker-Shannon Interpolation Theorem gives 
an explicit formula for doing exactly this. Any continuous signal (subject to bandwidth restrictions) can 
be reconstructed perfectly from its samples.

The practical difficulty in applying the Whittaker-Shannon Theorem is that a perfect reconstruction 
requires an infinite number of operations using arithmetic with infinite precision. Fortunately, perfect 
reconstruction is not necessary. There is no such thing as perfect measurements, and attempting an 
absolutely perfect reconstruction would only reproduce measurement noise in complete detail. 
Approximations to the Whittaker-Shannon formulas with a finite number of terms and finite numerical 
precision yield excellent results, with the numerical errors masked by the roundoff, nonlinearity, and 
noise effects that you will experience in real measurement data. 

What is a "resampling filter"?
The theoretical Whittaker-Shannon Interpolation Theorem formula has the form of a Finite Impulse 
Response (FIR, transversal) digital filter — except for the infinite number of terms involved. A 
practical filter is obtained by reducing that filter to a finite length by windowing, a standard DSP 
technique. After this, the calculation process is the same as those for an ordinary FIR filtering 
operation. A slight complication is that a different filter must be constructed for every point to be 
evaluated.
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What is the impact on signal amplitudes?
Just as ordinary frequency-selective filters have frequency-dependent gain properties, interpolation 
filters approximating the Whitaker-Shannon Theorem have these too, but the intent is to make the side-
effects as small as possible.

Low frequencies should see no detectable gain error effects. 

The interpolation filters in the TBRESAMP command deliberately sacrifice accuracy at frequencies 
higher than 40% of the Nyquist frequency of the new sampling rate, in favor of best performance at 
40% of the Nyquist frequency or below. This restriction does not necessarily compromise an 
application — the sample rate can be elevated enough to make sure that the desired frequency band 
falls within that suggested 40% of Nyquist frequency bound. 

Amplitudes of signals in the low frequency band are preserved within 0.0002 dB — that is, the 
attenuation effects on a signal of maximum amplitude are less than the bit chatter that you will get 
anyway from digitizing to 16 bits precision. Frequencies higher than the 40% of Nyquist frequency can 
still carry useful information, but you must keep in mind that the higher the frequency the greater the 
attenuation effects, so you cannot depend on the magnitudes to be accurate.

What is the impact on signal phase?
An interpolation filter has no phase distortion effects. However, practical implementation restrictions 
will sometimes select resampling locations that are only an approximation to the ideal locations, 
causing small erratic effects on phase that look like a lot like time jitter. 
Low frequency waveforms can't change very much from one sample to the next, so time displacements 
that are a tiny fraction of one sample at the original high-resolution have no observable effect. For a 
wave that is very high frequency and therefore changing very fast, localized small time displacements 
can result in signal variations appearing very similar to low-level random noise. Unlike true random 
noise, the magnitude of these effects decrease both as frequency and as amplitude decrease, so for 
typical real signals, the chatter is masked by natural background noise and is difficult to detect.

What are the “interpolation modes” and what is their effect?
Because time-jitter effects can sometimes be large enough to be observable, there are three available 
operating modes for selecting a resampling location, given a mathematical determination of the desired 
location. 

• Nearest neighbor mode.   There are no numerical computations. If the position of the resampled 
value is different from the position of an available time-based sample, the closest available 
sample position is selected, and its numerical value is used unmodified. This is called the 
Nearest Method in the Time Base Synchronization software. This approach is very efficient,  but 
it can produce an observable “phase jitter” in high-frequency signals. 

• Precalculated mode.   The resampling location is rounded to one of a finite set of locations 
where precomputed interpolation filters can be applied. The phase shift is approximately 1/1000 
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of the phase shift that would result from one sample displacement at the high internal sampling 
rate. To put this in perspective, if a signal has maximum possible amplitude of 32767 counts, at 
the maximum 40% of the Nyquist limit, the difference in a sample value due to the phase jitter 
could be no more than 16 converter counts. At more typical lower amplitudes and lower 
frequencies, the effects are proportionally smaller. This approach is called the Fast Method in 
the Time Base Synchronization software. For signals with normal levels, bandwidth, and 
background noise, or that are subjected to a frequency spectrum analysis, this is the method of 
choice, and it is selected by default.

• Phase-interpolated mode.   The resampling is calculated at two bounding locations for which 
precomputed interpolation filters are available, and then the final sample value is obtained by 
linearly interpolating between these two bounding filters. Using this method, timing jitter 
becomes undetectable. However, this computation requires twice the CPU resources of the pr-
calculated mode. This approach is called the Accurate Method in the Time Base Synchronization 
software. For extremely clean signals and absolute minimal measurement error, this is the 
method of choice. In practice, it rarely adds meaningful improvement to measurement quality. 

------------ End of Document ----------
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