
2265 116th Avenue N.E., Bellevue, WA 98004
Sales and Customer Support: (425) 453-2345

Finance and Administration: (425) 453-9489
Fax: (425) 453-3199

WWW: http://www.mstarlabs.com/

From the Microstar Laboratories web site

Data Reduction: Isolating Information
from Bulk Data
The most common reason for using a Data Acquisition Processor (DAP) board is
its extended capacity. But if you use that capacity in the same way that you
would use a basic data acquisition device, you will realize only a fraction of the
potential benefits. This note is about using data acquisition effectively on a larger
scale.

There are hardware and computing costs for capturing, moving, and processing
data. The information content within the data might be considerably less than the
bulk. Cost effective solutions will attempt to isolate the information content, so
that resources are used more efficiently.

Cutting Large Problems To Size – Divide and
Conquer
There are better ways to manage your needles than
to pile them in haystacks. The more complex your
data acquisition requirements, the more important it
is to organize the application into manageable
pieces, using a kind of layered organization.

The organizational decomposition principle:
decide what to do at a higher level, perform the
actions at a lower level. Higher levels provide
lower level processes the resources needed to function. Lower levels
provide higher levels with information needed to coordinate the
processes.

http://www.mstarlabs.com/
http://www.mstarlabs.com/dataacquisition/dap.html

Each removed piece of the problem is easier to deal with because it is small and
isolated. The larger problem becomes simpler after the removal of the details that
distract from the central mission. Applying the principle consistently to data
acquisition applications results in host processing that gets the information it
needs, rather than a lot of data with the information buried.

The Data Acquisition Processor board provides a processing resource that the
executive functions can use. It is only a matter of utilizing it.

Preprocessing and Filtering
Consider an application that measures a process
statistic over time, with measurements partially
obscured by noise. To achieve the higher-level goal,
first it is necessary to reduce noise content of the
signal by filtering, and then to compute the statistics
of the clean signal. The executive processing does
not need to do all of this grinding, and should
delegate the low-level activity to a "worker" task.
Preprocessing takes measurements from the
abstract digital form into the useful form that the application executive needs.
This is something that you will probably have to do one way or another, and the
sooner the better.

When signal noise is large enough that no individual measurement can be
trusted to produce a representative reading, statistical approaches such as
averaging must be used. Often, the sampling rates are boosted to capture
enough data for meaningful control of measurement variances. The processing
to get accurate information for the executive becomes much more intensive – all
the more reason to use extra computing resources.

With the DAPL system, your higher-level application can request averaging for
noise reduction, simply by requesting the following task in the DAPL processing
configuration.

AVERAGE(pSignal, cAvgBlock, pAverage)

You can then apply other pre-processing operations, such as offset and gain
correction if you wish.

SCALE(pAverage, cOffset, cSCale, pToHost)

Instead of streaming the bulk data into the host, clean, normalized values in
meaningful measurement units can be delivered.

http://www.mstarlabs.com/software/dapl/tabs.html

Data Selection
It is easy to run out of capacity in large-scale
multi-channel measurement applications. Due to
sheer volume, data can accumulate very fast. When
every single measurement is important, in ways that
can not always be anticipated, the best you can
hope to do is record as much data as possible for
later analysis. In other cases, though, you can be
more selective.

There are two very common situations in which data can be taken selectively.

1. Periodically. Sometimes sampling rates must be set very high to capture
the information of interest. But the process doesn't change very fast, so it
is not necessary to repeat the analysis frequently. On Data Acquisition
Processors, you can use the SKIP command to retain local bursts of data
for analysis.

// Select one block out of 50 for detailed analysis
SKIP(pBULK, 0, 1000, 49000, pRETAINED)

2. Intermittently. Sometimes data of interest are associated with isolated
events. You need lots of measurements when something happens, but
nothing the rest of the time. On Data Acquisition Processors, you can use
the LIMIT command (or any other event detection processing) with
software triggering to determine when the data are meaningful. Then use
the WAIT command to retain desired data for further processing.

// Select bulk data when a threshold level is reached
LIMIT(pMonitor, inside,20000,25000, tEvent)
WAIT (pBulkData, tEvent, 0,1000, pRETAINED)

Visual Data Displays
An important case of intelligent data selection
involves graphical displays. Suppose that you have a
data channel sampled at 10 microsecond intervals,
capturing data in blocks of 1000 samples. You want
to display data by block on a graphical plot. How
much is useful?

Suppose that you have a moderate screen resolution
with 1200 pixels width, with a graphical plot display
that is half of the screen width at 600 pixels. One pixel can display one value

along the vertical axis, while the horizontal axis represents the sequence. Thus
the screen can display 600 resolvable values at one time.

To register with human vision, a display screen update needs to persist for about
1/20 of a second, otherwise there is only the slightest sensation of a flickering
blur. Updating the screen 20 times per second would use 20 x 600 = 12000
values. That means that 88000 of the 100000 values produced each second
cannot be displayed, even under ideal conditions.

Host computers are well suited for graphical display purposes, but giving 8 times
more numbers than they can possibly hope to use is asking for problems. The
graphical display software must make some difficult decisions about which data
to display, which data to purge. And no matter how well it decides, it will not be
able to make the best decisions all of the time.

Given that data will be discarded one way or the other, you can take some
control, and perhaps avoid transferring a lot of data that cannot possibly be used
well.

• You can select data periodically, allowing sufficient time between updates
for data to be displayed and observed.

• You can select data when there is an indication that they contain
something of interest.

• You can also apply a mixed strategy, displaying interesting data when
available, otherwise updating periodically.

DAPL software triggering supports a kind of mixed data selection strategy that is
well suited for graphical displays. To use it, first determine how much data will be
needed. Suppose for example that there are 100000 samples captured per
second. Updating 4 times per second (once per 25000 input samples) can
produce an acceptable display when there is nothing important happening. When
there is anything interesting, the updates can occur as often as 10 times per
second. To get these behaviors, the trigger is configured with an automatic cycle
as follows:

TRIGGER mode=AUTO cycle=25000 holdoff=10000

Retain enough data for plotting at each event. Providing 600 to 1000 values per
display update, rather than 25000, produces cleaner displays and leaves your
application with more time for producing the results that matter.

http://www.mstarlabs.com/daq/triggering.html

Data On Demand
Another strategy for delivering data selectively is to
wait until the host application is ready and asks for it.
This is not the right way to observe a process
continuously, but it is good for obtaining current and
representative data quickly. Any data the host
doesn't need are cleaned away automatically.

The idea is to use some of the storage capacity on
the Data Acquisition Processor to preserve the most
recent block of data. When the host sends a request message, that data block is
sent immediately, using the MRBLOCK processing command. Because this data
block is already in buffer memory, response to the request is almost
instantaneous.

MRBLOCK(pSourceData, pRequest, cBlockSize, pSELECTED)

Knowing that data will be provided immediately, some tricky timing-related code
can be avoided in your application code.

Monitoring and Liveness
Sometimes the purpose of measuring is not
specifically to record the measurements, but rather
to verify that the data collection processing is
proceeding normally. For this kind of application,
there is really no point in tying up the host bus with
data transfers that should never have anything to
show. Data Acquisition Processors can perform this
kind of testing for the host quietly, in the background,
reporting results in a manner similar to other kinds of
data reduction processing:

• Periodic. Periodically verify that tests are running and results remain
reasonable.

• As needed. Inform the host when test results are outside of acceptable
limits.

• On demand. Allow the host to request the latest test results for
inspection at any time.

• Combined strategies.

Rate Normalization
Generally, the signal needing the highest degree of
time resolution will determine the sampling rate.
Once this is established, it determines the rate at
which samples are collected on all data channels.
That doesn't mean that all of these data are useful.
Data Acquisition Processors can use sampling
configurations and processing to reduce the number
of redundant samples when there is a mix of
fast-changing and slow-changing signals.

In the sampling configuration, select a sampling rate that is faster than the
minimum to obtain the required time resolution. For example, suppose a time
resolution of 100 microseconds is needed. Use 50 microseconds for the
sampling interval. Two such intervals equals the desired 0.1 millisecond interval
for the high-resolution signal.

Next, for each of the slower channels, determine a timing interval that is a
multiple of the sampling interval and sufficient for the channel. Suppose that the
application has four additional channels that change slowly, so that sampling
each one at 10 milliseconds intervals is sufficient. The slow channels can be
sampled once per each set of 20 sampling intervals.

Now assign physical signals to the logical sampling sequence. For the example,

1. the high resolution signal is sampled every second interval,
2. the four low resolution signals are sampled every 20th interval, and
3. arbitrary signals are sampled at any remaining unassigned intervals.

The input sampling configuration looks like the following:

idefine multirate
channels 20
set ipipe0 s1 // SLOW CHANNEL
set ipipe1 s0 // high rate sampling
set ipipe2 s0 // (ignore)
set ipipe3 s0 // high rate sampling
set ipipe4 s0 // (ignore)
set ipipe5 s0 // high rate sampling
set ipipe6 s2 // SLOW CHANNEL
set ipipe7 s0 // high rate sampling
set ipipe8 s0 // (ignore)
set ipipe9 s0 // high rate sampling

set ipipe10 s3 // SLOW CHANNEL
set ipipe11 s0 // high rate sampling
set ipipe12 s0 // (ignore)
set ipipe13 s0 // high rate sampling
set ipipe14 s0 // (ignore)
set ipipe15 s0 // high rate sampling
set ipipe16 s4 // SLOW CHANNEL
set ipipe17 s0 // high rate sampling
set ipipe18 s0 // (ignore)
set ipipe19 s0 // high rate sampling
time 50

end

The DAPL system allows you to extract the high resolution data from a
combination of data channels.

• The combined input channel pipe data stream
IPIPE(1,3,5,7,9,12,13,15,17,19)
will contain samples measured every 2 x 50 microseconds from the
high-speed signal source.

• The slow channels IPIPE0, IPIPE6, IPIPE10, and IPIPE16 will
contain samples measured every 20 x 50 microseconds from
individual channels.

Another strategy is to allow the Data Acquisition Processor to sample in a more
uniform manner, selecting only the necessary data from data buffers.

SKIP (IPipe0, 1,1,1, pHighRate)
// Retain one of two samples

SKIP (IPipe1, 0,1,999, pLowRate1)
// Retain one sample of 1000

SKIP (IPipe2, 0,1,4999, pLowRate2)
// Retain one sample of 5000

You can also use the two approaches in combination.

When you are using digital filtering for lowpass-and-decimate operations, you
can achieve a similar effect without SKIP commands. The FIRFILTER command
(and its cousin the FIRLOWPASS command) can reduce the number of filtered
output values as part of its ordinary processing. In the following example, one
value is retained for each 100 input samples collected.

FIRFILTER (IPipe(3,7,11,15), VFilt,65,1,
100, 0, pFiltered)

Logging Data
There are times when you really do need to retain
and analyze all of the data. You have no choice but
to spool as much data as possible across the main
host interface to storage on disk drives. But it can be
tricky to observe the progress of very high-speed
transfers without interfering and impairing the
transfer capacity.

The DAPL system has two ways it can help the host
processing avoid extraneous processing in the critical data transfer loops.

1. Let the DAP extract the supervisory information and add it as a
supplemental tag for each data block. In the following configuration, the
tag consists of a sample count and an average value. No testing or
searching is necessary. The host simply grabs these two values before
sending each block of 10000 values for logging.

NMERGE (1,pStartSample, 1,pAvgBlock, 10000,IPipe(0..49),
$Binout)

2. You can completely eliminate extra coding from the high-speed data
logging loop by configuring the DAPL system to send supervisory data on
a separate channel. A supervisory thread on the host can read this data
independently. On the DAPL processing side, the configuration might
look something like this:

COPY (IPipe(0..49), $Binout)
MERGE (pStartSample, pAveBlock, Cp2Out)

Conclusions
Simple data acquisition applications using simple acquisition devices in basic
configurations don't need to be reduced. But for hard problems, when you need a
DAP and all of its channel capacity and processing power, an everything-at-once
approach leads to entangled applications where unrelated concerns interfere with
each other: difficult to understand, difficult to test, difficult to optimize. Data
reduction removes the redundancy from raw measurements, performing the bulk
of the routine "number crunching" operations at the direction of the supervisory
software. Supervisory application software receives the information it needs,
when it need it, leaving more resources to concentrate on high-level tasks. This

http://www.mstarlabs.com/dataacquisition/dap.html

approach to organizing a data acquisition application is directly supported by the
DAPL system, so it is always available. All your application has to do is ask for it.

Copyright (c) 2007, Microstar Laboratories, Inc.
All rights reserved.

Microstar Laboratories, Data Acquisition Processor, DAP, DAP 840, DAP 4000a, DAP 5000a, DAP 5016a, DAP 5200a, DAP 5216a, DAP
5380a, DAP 5400a, iDSC 1816, DAPcell, DAPserver, Accel, Accel32, DAPL, DAPL 2000, DAP Measurement Studio, DAPstudio, DAPcal,
DAPlog, DAPview, and Channel List Clocking are trademarks of Microstar Laboratories, Inc.

This document presents proprietary information regarding Microstar Laboratories products. The information is provided "AS IS" and may be
subject to change without notice. You are granted no intellectual property rights in the information nor in the products. Microstar
Laboratories ASSUMES NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
INFORMATION PRESENTED, WITH OR WITHOUT USE OF MICROSTAR LABORATORIES PRODUCTS. Microstar Laboratories
MAKES NO CLAIMS OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Any performance specifications were determined in a controlled environment, dependent on component parts that are themselves subject
to unannounced specification changes by their respective manufacturers. Actual results may vary. Performance information is provided "AS
IS" with no warranties or guarantees expressed or implied by Microstar Laboratories regarding suitability of the information for determining
actual performance for any specific application.

Microstar Laboratories products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in
nuclear facility applications.

Other names and brands may have claims as property of others. Microstar Laboratories is not responsible for the performance or support of
third-party products mentioned in this document, and does not make any representations or warranties whatsoever regarding these devices
or products.

http://www.mstarlabs.com/software/dapl/tabs.html

	Data Reduction: Isolating Information from Bulk Data
	Cutting Large Problems To Size – Divide and Conquer
	Preprocessing and Filtering
	Data Selection
	Visual Data Displays
	Data On Demand
	Monitoring and Liveness
	Rate Normalization
	Logging Data
	Conclusions

