
2265 116th Avenue N.E., Bellevue, WA 98004
Sales and Customer Support: (425) 453-2345

Finance and Administration: (425) 453-9489
Fax: (425) 453-3199

WWW: http://www.mstarlabs.com/

From the Microstar Laboratories web site

Software Triggering
Triggering: When Is It Time to Measure?
Some measurements can be taken pretty much any time, and it isn't terribly
important when you start and stop. For example, if you are measuring the size of
an object, it will be roughly the same size regardless of when you measure it. But
not all measurement applications are like this.

For some applications, the phenomenon you need to measure is not always
present. Until it is, there is no point in recording measurements. These are
examples.

• Chemical reactions. When a reagent is added to a solution, things start to
happen. Mix the chemicals first and then start measuring, you miss
measuring the important initial phase of the reaction. Start measuring first
and then mix the chemicals, and you collect lots of extraneous
measurements before the relevant data.

• Synchronizing events. The power stroke of a engine follows firing events.
Measuring just any old time, you are equally likely to measure a fuel
injection cycle instead of a firing cycle.

• One-time or rare events. There is little point in collecting and sorting
through masses of data where nothing happens.

Background: Hardware Triggering
Though this article is about software triggering, it is helpful to contrast it with
hardware triggering, which is simpler, more familiar, and more limited.

http://www.mstarlabs.com/

If you have just the right digital electronic signal, you can use it to start (and
sometimes to stop) data collection. This kind of hardware control of the
measurement process is called hardware triggering.

Hardware triggering

If you don't have an appropriate digital signal, hardware triggering becomes more
complicated. Some data acquisition products provide a voltage comparator
amplifier for converting an analog signal into a digital form, which might be
sufficient.

Pre-Event Data and Buffering
To record data before an event occurs, you need two things: 1) sampling that
occurs whether or not events occur and 2) memory to record past measurements
just in case they are needed.

Preserving data requires memory. Hardware-based schemes typically use a
circular buffer configuration. In concept, special addressing logic selects memory
locations for new measurements sequentially, advancing around a circle. By
recovering stored values from the circular buffer, you can obtain measurements
preceding the time of an event.

When an event signal arrives, the hardware records the address of the most
recent sample value, placing this address in a special event register. Also, the
hardware informs the host of the event, to let it know that it had better do
something – fast!

Circular buffering scheme

Actual memory addresses are not circular, rather they are linear up to some
maximum, at which point there is a sudden "address wrap around" to zero.
Hardware devices typically leave the host software with the burden of tracking
the wrapping behavior and dynamically unwrapping it to select stored values.

The circular buffer scheme is highly dependent on software to respond to signals
for events, determine how to address the data, and fetch data across the data
bus into host memory. There is a race condition, and any delay in responding to
the hardware event signal results in overwriting and loss of some of the buffered
data.

Software Triggering
Rather than using hardware circuits to determine when to measure, it is tempting
to configure a software program and let it determine when to measure. This is the
idea behind "software triggering."

Software triggering leads to a kind of "chicken or egg" paradox. You don't want
the measurements captured until you trigger; but there is no point in triggering
until you know you want the measurements!

Most data acquisition software that claims to support "software triggering" merely
initiates the triggering action using a software command. This leaves you with the
decision about when to issue this command – back to the "chicken or egg"
paradox. Without seeing the data, how can you know whether you want to trigger
or not?

The DAPL system breaks the paradox much as hardware circular buffering does.
Measurement activity is started well in advance of capturing data. Past data are
retained in memory buffers, and the DAPL system manages the data memory.
You don't need to worry about how, and you don't need to worry about data
locations. Unused data are automatically released to make storage available for
new data. The buffering is completely automatic, and can expand to the limits of
available memory as needed. There is never a race condition, and new data can
never overwrite old data despite any delays that might occur.

The principal advantage of the DAPL software triggering is that you can analyze
data and detect events intelligently, directly in buffer memory. All of this takes
place on the Data Acquisition Processor board, without transferring anything to
the host PC. This doesn't eliminate the need to scan through masses of data
looking for events, but it avoids overloading your host with intense data transfers
and computations when there is nothing of interest.

For detecting and reporting events, the DAPL system keeps a streaming record
of event locations in a queuing mechanism called a trigger pipe. You can
extract the information about events in much the same way that you would read
from a data stream.

Software triggering scheme

There is one drawback to software triggering. A trigger event determines the
location of interesting data in a continuing stream of data, but does not initiate
responsive action. There remains a time lag until the event is processed. If you
need fast real-time response, software triggering is probably not the right tool for
the job.

Triggering: How Do You Use It?

http://www.mstarlabs.com/software/dapl/tabs.html
http://www.mstarlabs.com/dataacquisition/dap.html

To add software triggering to a data acquisition application on a Data Acquisition
Processor system, you will add the following additional features to your
configuration.

1. Define a trigger to preserve information about detected events.

2. Define a trigger-writing task to detect events.

3. Define a trigger-reading task to respond to the events and perform the
processing you want.

4. Define a pipe to receive the selected data.

It is presumed here that the application is configured for input sampling. The
sampling configuration can have any number of channels, and you can pick any
channel you want to detect events. Here, we will presume that triggering scans
the contents of the first channel pipe IPipe0. We also assume that you are
preparing your configuration with the assistance of the DAPstudio program.

Defining the Trigger and Pipe
A trigger preserves the information about where in a data stream an event is
detected. You can define a trigger in DAPstudio under the Processing tab and
its Declarations sub-tab.

trigger T_VHigh mode=normal

Define a pipe to receive the selected data on the same Declarations sub-tab.

pipe P_Select word

Define Processing to Detect Events
Define the processing task that makes the data selection. The possibilities are
limitless... but this article covers only the simple case that an extreme signal level
indicates an event of interest. Presume that any value higher than +25000
indicates that an event has occurred.

In DAPstudio, select the Processing tab and the Procedure sub-tab. Enter the
command name Limit and then an open parenthesis in the task configuration
editor. DAPstudio will guide you through the entry of the following task
parameters.

http://www.mstarlabs.com/dataacquisition/dap.html
http://www.mstarlabs.com/dataacquisition/dap.html
http://www.mstarlabs.com/dapstudio/tabs.html
http://www.mstarlabs.com/dapstudio/graphics/declare.html
http://www.mstarlabs.com/dapstudio/graphics/declare.html
http://www.mstarlabs.com/dapstudio/download.html
http://www.mstarlabs.com/dapstudio/graphics/procedure.html

Limit(P_Select,inside,25000,32767,T_VHigh,inside,25000,32767)
1. IPipe0

– This is the data channel that will be scanned for events.

2. inside
– Begins the definition of the data range that indicates an event.

3. 25000
32767
– These two parameter define the limits of the range that indicate the
event.

4. T_VHigh
– Specify the trigger you just defined to receive the event notifications.

5. inside
25000
32767
– These three parameters define a lockout range. Until the signal level
drops out of this range, no additional events will be recorded.

Define Processing to Respond to Events
Let us suppose that the desired action is to capture 100 samples prior to the
event and 924 samples from the event onward, for a total of 1024 samples. To
do this, use another pre-defined processing command called Wait. Enter this
command line in the processing configuration. The DAPstudio program will assist
you as you enter the following task parameters.

Wait(IPipe1,T_VHigh,100,9024,P_Select)
1. IPipe1

– This is the data stream from which data are selected.

2. T_VHigh
– Specify the trigger with the information about events.

3. 100
9024
– Specify the number of samples before the event, and the number of
samples from the event onward, to be extracted.

4. P_Select
– Tell the command where to place the selected data.

You will typically go to the Send to PC tab, de-select the usual input channels,
and select the retained data pipe (in our example, P_Select) for transfer to the
PC host.

Your application is configured and ready to test. Once you have the configuration
set up correctly, you can copy it into any software application you want, from an
embedded application that you write yourself, to a monster GUI application with
every conceivable kind of graphical displays and user controls. The performance
is embedded in the data acquisition processor.

Use Software Triggering to Process Data in
Blocks
Once software trigger events are detected they are... in software. This gives the
flexibility to do some things easily that would otherwise be enormously difficult,
perhaps impossible. Applications can use software triggering to process data in
blocks rather than individual samples.

Selecting Data in Blocks
Suppose for example that data are captured at 1 million samples per second.
2048 samples are selected for processing by an FFT command every 0.1
second, producing 1024 magnitude output terms per input block of 100000
terms. Most of the time, nothing happens and the FFT data can be discarded. To
this point, no triggering is needed. Just use a SKIP command to retain the first
2048 samples from each block of 100000 input samples, route this data for
processing by the FFT, and discard the rest.

Most of the time, nothing happens. However, if an event occurs any time within
the 0.1 second interval spanned by a block of 100000 samples, three FFTs are
computed. One FFT is applied to the first 2048 samples from the current block.
The other FFTs are applied to the first 2048 samples from the preceding block,
and to the first 2048 samples from the block to follow. How can you do this?

Thinking about this in terms of blocks, it is relatively easy. For example, if the
event occurs in the input block 5 (input samples 500000 through 599999), you
want to keep the FFT results for blocks 4, 5, and 6. You can determine the input
block number easily from the event location.

(event location) / 100000

One FFT every 1/10 second is easy for a DAP board to do. So instead of
worrying about when to perform the FFT operations, it is easier just to stream

http://www.mstarlabs.com/dapstudio/graphics/sendpc.html
http://www.mstarlabs.com/dataacquisition/dap.html

each 2048 point data block into FFT processing as it arrives. The resulting blocks
of 1024 FFT output values stream out. If an event occurs, you keep the resulting
FFT blocks, otherwise they are discarded. The locations of desired FFT results in
the FFT output stream are calculated easily.

(block number) * 1024

Processing Implementation
All of this theory is fine, but event locations are not the same as ordinary data.
How can you apply these calculations to events? Easily, as it turns out. The
DAPL system provides a command called TRIGSCALE that takes a trigger input
derived from analyzing data at one rate, and produces from it a new trigger event
that operates at a different data rate. Use the modified event locations when
selecting data from the FFT output stream.

Here are the configuration lines that you would use.

Trigscale(RAWtrig, 0, 1024, 100000, FFTtrig)
Wait(FFTresults, FFTtrig, 1024, 2048, FFTselected)

The details:

1. Analyzing the original sample stream produces events in trigger
RAWtrig, as described previously.

2. The Trigscale command takes an event location from trigger
RAWtrig, without any offset adjustment, and divides by 100000. It
truncates the fraction to produce the input block number.

http://www.mstarlabs.com/software/dapl/tabs.html

3. The Trigscale command then takes that intermediate result and
multiplies it by 1024 to obtain the location of the associated FFT output
data block, placing this new event location into trigger FFTtrig.

4. The Wait command selects data from the FFT output stream in the usual
manner, using the locations from the FFTtrig trigger, and placing the
data into transfer pipe FFTselected.

Extensions
In this example, the application captures data when it observes something
interesting. However, it is not completely rigorous about capturing all data where
anything interesting occurs. If the last block analyzed for an earlier event
happens to contain a new event, it will be impossible to respond to this event
properly. The data for the "block prior" was taken by previous processing. The
DAPL system cannot partially respond, which means that the FFT block following
the secondary event will be missed.

You can be sure that all events are covered if you use the DEFERRED operating
mode and HOLDOFF properties (link opens 1.27MB PDF manual) when you
declare trigger FFTtrig command in your processing configuration.

Multiple Channel Acquisition with Triggering
The application is a vehicle crash test. You will observe data for stress,
buckling, and fractures at 100 sensor locations on an instrumented vehicle – and
in a fraction of a second it is all over.

You have just one chance to capture the measurements. There is too much data
to collect it all continuously, but you cannot afford to miss any relevant data or
risk drowning your system with irrelevant data before the crash event has
occurred.

http://www.mstarlabs.com/docs/manuals/DAPL2000.PDF#page=357
http://www.mstarlabs.com/docs/manuals/DAPL2000.PDF#page=357

Suppose that you are using a DAP 5400a/627, sampling 8 channels
simultaneously, with each of the 100 channels sampled at each 100 microsecond
interval. During an experiment covering 0.5 seconds, you will collect about 4
million samples. The host interface can transfer about 2.5 million samples under
ideal circumstances. Depending on what your application processing does with
the data, you might be able to move perhaps 1 million samples into your
application software during the event. The other 3 million samples are captured
and buffered on the DAP, and sent when the host software is able to accept
them.

Reliable Triggering
A high-speed transient glitch propagating along a sensor wire could easily set off
an electronic triggering circuit. A glitch of that kind would not be persistent. The
real signals of a crash event would be very different. When using software
triggering, you can combine processing with triggering, so that real events are
distinguished from the meaningless noise glitches.

Suppose you select one of the microphone channels that will respond to early
contact, and connect it to signal channel IPipe0. You don't want DC offsets on
this channel to make the triggering too sensitive or too insensitive. You can use a
running average over a long time window to approximate the offset level for
cancelling it.

On the other hand, you don't want a single "spike" to prematurely trigger. You
can use a running average with a short time window to smooth out noise spikes.

http://www.mstarlabs.com/dataacquisition/5400/5400spec.html

To trigger, the signal must reach the triggering level and stay there for a few
samples.

The following configuration cancels DC offsets, smoothes out spikes, and
triggers when the signal level deviates from the baseline level consistently
through a window of 7 samples.

pipes pDCoff word, pCleaned word
pipes pDiff
trigger tCrashEvent
...
pdefine CrashCapture

raverage(IPipe0, 400, pDCoff)
raverage(IPipe0, 7, pCleaned)
pDiff = pCleaned - pDCoff
...

Now you can trigger reliably on the processed pDiff signal, as described in
other parts of this article.

Limit(pDiff, OUTSIDE, -20000, 20000, tCrashEvent)
...

Accounting for Many Channels
The crash is detected on just one channel, but data are collected in many
channels. As we saw earlier, the position of the data in a triggering channel must
be used to determine the associated position of the data in channels where data
are taken.

The Wait command makes this very easy. When you capture data from multiple
channels of an input channel pipe, the DAPL system will automatically account
for the number of samples in the individual triggering channel and in the
multiplexed channel pipe. You can select extra samples from just before the
crash to establish a statistical baseline, and then capture the 4 million samples
for the crash event. The complete set of samples is sent straight to the host
system.

...
Wait(IP(0..99), tCrashEvent, 12000, 4000000, $Binout)

end

http://www.mstarlabs.com/software/dapl/tabs.html

Intelligent Triggering
Despite its speed limitations, software triggering might still be faster by a wide
margin than what your PC host or a Programmable Logic Controller could do. If a
response delay of one millisecond is acceptable, a Data Acquisition Processor
might have the speed you need to measure AND control your processes.

Multi-Input ON-OFF Control
For this example, an automated manufacturing process will inject a carefully
measured amount of liquid into a bottle, and then the bottle will be moved to the
next station for subsequent processing. For purposes of filling the bottle, there is
a sequence of events.

1. The bottle arrives for filling, breaking the light beam of an optical sensor.
Triggering on the sensor signal begins the fill process.

2. Begin measuring the weight of the bottle. Each time the weight measures
low, emit a pulse to request additional fluid fill and continue.

3. When the weight indicates that the bottle is full, trigger to seal off the fluid
flow.

We will concentrate on the triggering. The problem here is that one sensor starts
the fill operation, while a completely different sensor stops it. A Programmable
Logic Controller is a suitable alternative for this application if speed requirements
are moderate and you don't need to worry about high measurement precision. A
PLC can give you 1/30 or 1/60 second time resolution, but a DAP board can give
you 1/1000 second time resolution easily.

ON-OFF Triggering with DAPL
Suppose that the optical sensor readings come in on input data channel IPipe0.
A high-to-low change in the signal level when the light beam is broken will
indicate that a bottle is in position.

Suppose that the weight sensor readings come in on input channel IPipe1. It is
calibrated so that the voltage level rises as the fluid is injected, with 24000
converter counts indicating a full bottle.

The DAPL system provides a special command called Toggle to coordinates
signals from two sources. Each source is processed in a manner similar to the
Limit command, but the signals are used one at a time. The Toggle command
skips activity on the signal it is not watching.

TOGGLE (IPipe0, inside, 0, 1000, \
IPipe1, outside, -32768, 24000, T_Fill)

The details:

http://www.mstarlabs.com/dataacquisition/dap.html
http://www.mstarlabs.com/software/dapl/tabs.html

1. Watch IPipe0 until the voltage level from the optical sensor measures in
the range 0 to 1000 counts. When this occurs, write an event to trigger
T_Fill.

2. Ignore the IPipe0 pipe, and instead watch the weight level data from the
IPipe1 pipe. When this exceeds 24000 – the bottle is full – write another
event to trigger T_Fill.

Responding to ON-OFF Events
The strictly alternating sequence of ON events and OFF events in trigger
T_Fill is processed by the Toggwt command. The Toggwt command is
something like the Wait command, but it expects alternating events.

TOGGWT (IPipe1, T_Fill, P_DigPort, "FORMAT=STREAM")

The TOGGW2 command has many other output control options besides STREAM,
but streaming output is the simplest, and it is used for this example. The weight
measurements are copied from IPipe1 into the pipe P_DigPort starting when
the ON event arrives, and the data transfers continue until the OFF event arrives.
If the fill process is working properly, the fill weight will increase smoothly, and
the fill process will terminate at the correct level.

The rest is beyond the scope of this article, but to summarize briefly, the data in
pipe P_DigPort appear at regular intervals determined by samples propagating
through the processing sequence. We can replace the values of the retained
weight measurements with an alternating sequence of values 1 and 0, term by
term. These can then be used to drive a digital output port. That controls the
injection valve solenoid.

Host-Triggered Measurement
Software triggering can allow intelligent decisions about when to capture
meaningful data, without any intervention from the host system. But there are
times when only the host system knows when it is appropriate to measure.

In most data acquisition systems, the software triggering is just a slow means for
activating hardware triggering across a host interface bus. With a Data
Acquisition Processor board, the same kind of triggering is available, and it
remains slow. The bus interface is fast, but it has unpredictable setup delays.
There is nothing that can be done about this.

http://www.mstarlabs.com/dataacquisition/dap.html
http://www.mstarlabs.com/dataacquisition/dap.html

For example, suppose that the purpose of a test is to measure how well shielding
material protects against hard impacts.

There is no point in collecting impact data until the firing mechanism is ready for
release. The PC host could activate the release mechanism and at the same
time tell the Data Acquisition Processor to expect the event. The problem is, the
signals to the release mechanism and to the DAP take different hardware signal
paths, and the operating system delays for delivering the messages on each
channel are unpredictable.

Suppose that the following timing constraints apply:

• The setup delay to send a new message to the Data Acquisition
Processor is 0 to 25 milliseconds.

• The setup delay in signalling the release mechanism is 0 to 25
milliseconds.

• The time delay to reach impact is 5 milliseconds.
• The impact event finishes in 10 milliseconds.
• The sampling rate is 1000000 samples per second.

The following diagram illustrates the two most extreme cases for timing.

In the first case, the Data Acquisition Processor receives its notification almost
immediately, while the release mechanism message is delayed 25 milliseconds.
The DAP will not start to see any meaningful data until 30 milliseconds later. In
the second case, the release mechanism receives its message 25 milliseconds
ahead of the DAP, and the entire experiment is completed 10 milliseconds before
the DAP is notified.

To make sure that the DAP captures all of the data in the case that its notification
arrives late, it should retain data starting 20 milliseconds before its notification
time. To make sure that the DAP captures all of the data in the case that its
notification is early, it should continue to retain data until 40 milliseconds after the
notification. The total data collection interval is 60 milliseconds, and 60000
samples are collected.

Converting Messages to Events
A message is easily transferred from PC host software into the Data Acquisition
Processor using pre-defined communication pipe $Binin . In the following
application coding example, the DAP_outhandle variable points to the $Binin
pipe, and the transfer value is taken from the arbitrary buffer – in this case, a
2-byte integer variable. The value doesn't matter. It is the transfer that signals the
external event.

DapBufferPut(DAP_outhandle, 2, &arbitrary);

When this number reaches the Data Acquisition Processor, an event is
constructed in the software trigger T_PCevent using the PCASSERT command.

PCASSERT($Binin, T_PCevent)

The PCASSERT command solves the problem of determining the position in a
data stream when the input data come from an external source. It assigns an
event position based on the current sample count of the sampling process.

For the impact test example, after the trigger event is posted, a WAIT command
can be applied in the DAPL configuration as usual, preserving 20000 samples
before the event and 40000 samples after the event.

WAIT(IPipe0, T_PCevent, 20000, 40000, $Binout)

Extensions
In the example, a captured data set will include 60000 samples, of which only
10000 are relevant. The rest allow for the uncertainties in PC host timing.
Intelligently isolating relevant data is the specialty of software triggering. The fact
that the selected data came from a triggering process doesn't matter. You could
apply an additional LIMIT and WAIT command pair as described in previous
sections to isolate the relevant parts.

An alternative solution is to let the DAP detect the impact event by testing a data
channel in the usual manner. To prevent extraneous triggering events between
experiments, use the TRIGARM command to disable triggering until the next
experiment is ready.

This concludes the article on software triggering, but hardly exhausts all of the
possibilities. Some additional topics covered in the manuals but not covered here
include:

• logic to coordinate and merge event sequences from multiple sources
• using software triggering on multiple slaved boards
• custom programming of trigger processing commands

Copyright (c) 2007, Microstar Laboratories, Inc.
All rights reserved.

Microstar Laboratories, Data Acquisition Processor, DAP, DAP 840, DAP 4000a, DAP 5000a, DAP 5016a, DAP 5200a, DAP 5216a, DAP
5380a, DAP 5400a, iDSC 1816, DAPcell, DAPserver, Accel, Accel32, DAPL, DAPL 2000, DAP Measurement Studio, DAPstudio, DAPcal,
DAPlog, DAPview, and Channel List Clocking are trademarks of Microstar Laboratories, Inc.

This document presents proprietary information regarding Microstar Laboratories products. The information is provided "AS IS" and may be
subject to change without notice. You are granted no intellectual property rights in the information nor in the products. Microstar
Laboratories ASSUMES NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
INFORMATION PRESENTED, WITH OR WITHOUT USE OF MICROSTAR LABORATORIES PRODUCTS. Microstar Laboratories
MAKES NO CLAIMS OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

http://www.mstarlabs.com/software/dapl/tabs.html
http://www.mstarlabs.com/docs/manuals.html

Any performance specifications were determined in a controlled environment, dependent on component parts that are themselves subject
to unannounced specification changes by their respective manufacturers. Actual results may vary. Performance information is provided "AS
IS" with no warranties or guarantees expressed or implied by Microstar Laboratories regarding suitability of the information for determining
actual performance for any specific application.

Microstar Laboratories products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in
nuclear facility applications.

Other names and brands may have claims as property of others. Microstar Laboratories is not responsible for the performance or support of
third-party products mentioned in this document, and does not make any representations or warranties whatsoever regarding these devices
or products.

	Software Triggering
	Triggering: When Is It Time to Measure?
	Background: Hardware Triggering
	Pre-Event Data and Buffering
	Software Triggering
	Triggering: How Do You Use It?
	Defining the Trigger and Pipe
	Define Processing to Detect Events
	Define Processing to Respond to Events
	Use Software Triggering to Process Data in Blocks
	Selecting Data in Blocks
	Processing Implementation
	Extensions
	Multiple Channel Acquisition with Triggering
	Reliable Triggering
	Accounting for Many Channels
	Intelligent Triggering
	Multi-Input ON-OFF Control
	ON-OFF Triggering with DAPL
	Responding to ON-OFF Events
	Host-Triggered Measurement
	Converting Messages to Events
	Extensions

