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1.   Introduction
The downloadable Rotating Machinery Analysis Module (ROTM.DLM) for xDAP systems provides a 
new way to capture and analyze measurements from rotating machines. 

Traditional Approaches
Previously, there were two options for measuring a rotating machine. 

1. Capture your data according to the timing from a fixed-rate sampling clock. 

This approach gives high-resolution data relative to a consistent elapsed-time reference, but this is not 
always the most convenient, often not useful at all. Things like power transfer rates and resonant 
mechanical frequencies are best observed in time-based data, but these are often not of special interest. 
There is no direct information in the data set about position. The number of rotations covered in any 
one data set will vary inversely with the speed. Suppose for example that you are studying harmonic 
distortion for a generator under load. An FFT data analysis is relatively straightforward if the number 
of samples captured per rotation happens to be the exact number of samples that an FFT data block 
requires. But this is a rarity. The slightest variation in speed will cause misalignment between the 
rotation angles and the ends of the data block, leading to some severe complications for later data 
analysis.  

2. Capture your data under hardware control of an external timing reference signal. 

With sampling slaved to the signals from an external encoder device that rotates at the speed of the 
equipment, the number of samples per rotation and the angular positions for data capture will be strictly 
fixed, making a data analysis relatively straightforward. But this approach is inherently limited. You 
can't know the elapsed time or actual frequency, because the time between samples varies with speed. 
The slower the speed, the lower the time-resolution of measurements. Important information could be 
missed, and high frequencies would not be properly resolved. Even though there is never a problem 
with a poorly aligned or improperly-sized data block, the encoder hardware could restrict you to an 
inconvenient data block size.
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The “Rotating Machinery Analysis” alternative 
The Rotating Machinery Analysis module combines the best features of time-based sampling and 
encoder-based sampling. The data are captured at a very high rate, based on a precise, stable digital 
oscillator. The sampling process measures not only your signals, but also your encoder timing pulses, 
as data. A relationship is established between locations in time and locations in rotation angle. Data can 
then be obtained from the high resolution data stream at desired locations relative to the encoder pulses. 
For example, if you have a 1 degree encoder (360 pulses-per-rotation), you can sample at 1024 
locations-per-rotation, even though the hardware doesn't support this directly. 

The relationship to “resampling”
This document makes frequent references to “resampling.” Sampling is virtually instantaneous – 
measurements that you obtain with an xDAP represent the value of the input signals at extremely 
narrow sampling instants. There is no guarantee that instants at which samples are captured using a 
high-resolution sampling clock will line up perfectly with the instants at which an encoder signal 
transition occurs. Quite the opposite – sample values that would be captured under encoder hardware 
control rarely “line up” exactly.

Given the abundance of samples captured, however, there are many samples available in the vicinity of 
every encoder pulse edge. Using well-known DSP techniques, there is plenty of information to 
reconstruct the value that would have been measured if the signal had been measured exactly at the  
encoder pulse edge. This is sometimes called “interpolation” or “time-shifting.”
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The resampling technology is well-established and time-proven, used in all kinds of digital processing 
applications every day, even if you haven't heard much about it before. Though resampling has known 
limitations, it turns out that the hardest question is where should the resampling be done in the presence 
of continuously changing rates. For a quick introduction, see Appendix I in this manual. 
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2.   Configuring the xDAP 

The Rotating Machinery Analysis commands are run within the DAPL 3000 system environment, by 
the xDAP processor, at the time that the samples are captured. Your data arrive at your PC host 
application ready to use, with all of the calculations completed. 

When you first receive your  Rotating Machinery Analysis module, first install your 
DAP software and your xDAP unit. Run the Data Acquisition Processor control 
panel application in your Windows system, and select the Modules tab. Click on the 
Add button in the lower left. In the pop-up dialog, click the DAPL3000 button, and 
click the Browse button in the lower right corner to locate the copy of the module on 
your system. When you find it, select it and click Open. Use the default options. Back 
in the “Adding a module” dialog, click the OK button in the lower left corner. Your 
module should now be included in the DAPL system software, and it will be loaded 
automatically each time the DAPL system is initialized on your xDAP unit.

If you are going to record data at both high-rate clocked and encoder-clocked rates, 
passing the data streams to the host through separate channels to avoid rate problems, 
you should use the Browser tab in the Data Acquisition Processor control panel 
application to set up the Cp2Out pipe as a second channel from the DAP to the host 
PC for binary data transfers. Right-click on the Compipes node and then the Create 
option. Your added pipe will be available each time the DAPL system is initialized.

An xDAP application typically uses a text file to deliver the configuration commands, and the 
commands are downloaded from the file all at once to the xDAP unit. Using the DAPstudio software, 
this script file is generated on-the-fly when needed. The results of running this configuration are 
preprocessing operations necessary to obtain the best possible representation of your data. That is not 
the end of the story: various kinds of application programming are usually required in the host system 
to extract the final information from the data sets. This manual will not go into the details of 
application programming – for which every application is different.

The only thing special about  Rotating Machinery Analysis is the use of some special commands in the 
processing configuration sent to your xDAP. The following is a typical application configuration, with 
explanations to follow:
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// DAPL configuration for rotating machinery analysis

// Clear any remnants from past configurations
reset

// Configure the required data pipes
pipes  pEnc double, pOutMux word

// Configure the input sampling
idefine  highrate
  channels  8
  set  ip0   d0      // encoder data pulses 
  set  ip1   d2      // encoder reference pulses 
  set  ip2   d4      // first data channel 
  ...
  set  ip7   d14     // last data channel
  scan  10.0
end

// Configure resampling
pdefine  resampling
  // Analyze encoder signal to determine sample locations
  ENCDRATE(720, ip0, ip1, 0, 14750, ANALOG, 1000, pEnc)
  // Resample selected signals at encoder rates
  ADJRESAMP(ipipe(2,3,4,5), 4, pEnc, FAST, pOutMux)

  // Transfer resampled data to host
  // Data source: channels 2, 3, 4, 5 (resampled)
  COPY(pOutMux,$BinOut)

  // Transfer high-rate time-based data to host (raw)
  // Data source: channels 2, 3, 6, 7 (raw time-based)
  COPY(ipipe(2,3,6,7), Cp2Out)
end
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Analyzing this configuration example line by line:

• reset
Clears any residual configurations or data left over from past activity.

• pipes  pEnc double , pOutMux word
Reserves pipes for intermediate data movement, related to timing analysis and resampled data.

• idefine  highrate
  channels  8
  ...
end
Define an input sampling configuration capturing 8 channels each scan interval

•   set  ip0   d0   
  set  ip1   d2   
Use one channel to observe encoder data timing pulses. Use one channel to observe encoder reference pulses.

•   set  ip2   d4 
  set  ip3   d6 
  set  ip4   d8 
  set  ip5   d10 
  set  ip6   d12 
  set  ip7   d14 
Configure six more channels to capture various other input signals. Hardware channels are assigned in such a way 
that all six channels can be captured simultaneously, along with the encoder pulse observations.

•   Scan  2.0
Configure the channel scan rate so that every channel and the encoder pulses are scanned sufficiently fast.  At 8000 
RPM, this configuration with a 720 pulse-per-revolution encoder would have about 5 samples per encoder pulse, 
which is about bare  minimum. 

• pdefine  resampling
  ...
end
Define the data processing that goes between the sample capture and the data transfers to the PC host.

•   ENCDRATE(720, ip0, ip1, 0, 14750, ANALOG, 1000, pEnc)
Apply the ENCDRATE processing command to analyze the time relationship between encoder pulses and samples 
captured on the sampler clock. The encoder hardware has 720 pulses per rotation, but samples are desired at 1000 
equally-spaced angular positions per rotation. The ip0 and ip1 channels from the input sampling configuration 
observe the encoder pulses. Voltage levels on the logic signals are approximately 0V for logic low, approximately 
4.5 volts for logic high, equivalent to digitized levels 0 and 14750 on the 10-volt digitizer. The input channels 
monitoring the rotation are ANALOG. The timing information is delivered through pipe pEnc. 

•   ADJRESAMP(ipipe(2,3,4,58), 4, pEnc, FAST, pOutMux)
Apply the ADJRESAMP processing command to resample the data from the four signals on input channels 
ip(2,3,4,5) at the 1000 points per rotation established previously. The timing information used to locate the 
resampling positions is taken from pipe pEnc.  The resulting data are placed into pipe pOutMux.
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•   COPY(pOutMux,$BinOut)
  COPY(ipipe(2,3,6,7), CpOut2)
Transfer the resampled data from pipe pOutMux through pre-defined communication pipe $BinOut to the host. 
Transfer time-based samples directly from the four channels ipipe(2,3,6,7) through the extra 
communication pipe CpOut2. Separate streams are used so that the distinct data rates through the two channels 
do not interact and cause an unintended backlog of inaccessible samples. 

The only part missing from this story is the command to make it all start to happen –  the  start 
command. Typically, you will not tell the xDAP to start its processing until your machine under test is 
operating and ready to be measured.
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3.   Applications
This section describes some typical applications using the Rotating Machinery Analysis Module.  Keep 
in mind that these are pre-processing applications, executed by embedded xDAP on-the-fly, so that any 
data selection and transformation operations are already completed when your application program 
receives the the data. You can record both transformed and raw data if you wish, with suitable care. 

Each application described in this section has a corresponding DAPstudio configuration file. You can 
begin configuring new applications by connecting real signals into these applications and then 
incrementally adapting them. Or if you prefer to work in a different environment, you can use the 
DAPstudio Save DAPL option to export the configuration in a text script file form, which can then be 
modified or used directly with any software environment.

Using features of the Rotating Machinery Analysis package does not take away any of the other 
processing options you might wish to use in the embedded xDAP environment. For example, if you 
wish to collect data from multiple blocks and average them to reduce measurement noise, you can 
certainly add this processing. This section, however, will concentrate on core features related to 
rotating machinery and timing. 

Here are some of the added capabilities you get from the Rotating Machinery Analysis Module.  
1. Obtain data sets equivalent to the ones you would get using encoder-driven sampling directly. 

(That is... you don't give up anything just because encoders don't drive sampling directly.)

2. Obtain samples at different angular resolution than provided by the hardware encoder.

3. Retain both time-based and encoder-based data blocks from an experiment.

4. Locate encoder-based data sets from events detected in high-resolution sampling data. 

5. Locate time-based data sets from events detected in encoder-aligned data.

6. Extract profiles of  instantaneous rotation speed.
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Application 0: Test effects of resampling (simulation) 
If you are ready to start with real applications, you can skip this part about simulation and validation. 
But this is something ready to run “out of the box” before you have anything real devices wired up and 
attached to your xDAP system.

Resampling seems almost magical. How is it possible to reconstruct a waveform to full accuracy with 
only 5 samples per waveform cycle? Even if the internal details are not clear, the results should be 
demonstrable. 

In this self-testing application, you compare resampled values to ideal mathematical values, to 
demonstrate that the resampling calculations are reliable. While this is only a mathematical exercise, it 
is a self-contained test that you can run before any physical devices are set up.

It takes relatively elaborate mathematics to predict the time duration for each pulse from an encoded 
device, for the general case of smooth but unknown rotational speed variations. Since this simulation is 
somewhat artificial anyway, it considers only a special case of steady rotation. For this case, we can 
predict exactly how many sample intervals will span each encoder pulse interval observed.

This exercise assumes a device with 360 sample locations per rotation, but 256 sample locations are 
desired for an FFT frequency analysis. Let's set up the sampling clock such that there are 20 samples 
per encoder pulses at the desired new rate. There will be 20 x 256/360 = 14.222222 samples observed 
per encoder pulse at the original pulse rate, on the average. But since the encoder is digital, what you 
will actually get is sometimes a count of 14 samples during a pulse, sometimes a count of 15, resulting 
in the appropriate 14.222222 samples average. We will simulate this by generating sequences of 14 or 
15 samples between pulses, in the appropriate 7-to-2 ratio. 

Suppose that we have a sinewave signal with 4 cycles per rotation spanning each block of 360 encoder 
pulses. After resampling, the original groups of 90 pulses per waveform cycle will be reduced to 64 
locations per waveform cycle at the new resolution.  We can generate sine wave data having these 
periods analytically, as a baseline for evaluating the quality of the resampled signal values.  

Solution: Use a  COPYVEC task to generate the digital logic bit pattern simulating an encoder pulse 
sequence as observed on a digital port.  Apply this to an an  ENCDRATE command  to apply a timing 
analysis for the resampling. Use one SINEWAVE command on the xDAP to generate ideal, band-
limited sampled data prior to resampling, and another SINEWAVE command to calculate the theoretical 
ideal results for the wave at a modified frequency, as it should appear after resampling. Use an 
ADJRESAMP command to combine the timing information and the original sampled data stream in an 
attempt to construct a data stream that matches the theoretically ideal  resampled data stream. 

There are some extra padding samples placed into the input data sequence. These align the phase of the 
data stream and the phase of the ideal signal so they start aligned when the encoder analysis 
synchronizes to the measured data. In general this is hard to predict, but we can do it for this 
configuration with its special case.

One way to determine whether there are systematic, repeating errors such as harmonic distortion is to 
apply an FFT analysis. Since the input is a pure (sampled) sine wave, the FFT of the resampled data 
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should also be a pure sine wave. Look for significant magnitude attenuation, significant harmonics 
from distortion,  and phase displacement.

Result: 
FFT values not aligned to the original input sampling are artifacts of the fixed-point numbers and the 
resampling. However, the largest of these distortions is 0.27, corresponding in magnitude to 
approximately ½ of one encoder count. The resampling did not introduce significant nonlinear 
harmonic distortion, and the noise levels are in line with what you would expect from numerical 
rounding alone.

Comparing the fourth location in the FFT for the mathematically pure data and the resampled data 
stream at the frequency of the input signal, the FFT terms found there have the following polar form. 

Term 4  =   1.414197E+04 | -1.569986E+00
Ideal   =   1.414216E+04 | -1.570796E+00

This is a close match, but not perfect, and you can see the effects of resampling here. The magnitude 
1.414197E+04 is off by about 0.019 units, which corresponds to an error of about ½ converter 
tick. The phase match here is within 0.0002 radians, and since this is at a frequency 4 times the 

12

SINEWAVE

COPYVEC ENCDRATE

ADJRESAMP

MIXRFFT

simulated 
encoder  signal

ideal
spectrum

pre-calculated
     data

ideal signal
 samples 

SINEWAVE

ideal resample
    values actual resample

    values 

MERGE to host

MIXRFFT

actual 
spectrum

timing analysis



rotation rate, the overall rotation estimate is off by approximately 0.00005 radians.  

DAPL configuration:

VECTOR  vPulses  word = ( 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ) 
PIPE    pTiming  double
PIPES   pRepPulses word
PIPES   pOldSine, pFastSine, pNewSine, pIdealSine 
PIPES   pIdMag float, pIdAng float, pNewMag float, pNewAng float

// Values that we can predict will be skipped as encoder analysis
// synchronizes at the end of the first complete encoder pulse
// it sees. This is easier than adjusting phase on the ideal wave.
FILL    pFastSine  0,0,0,0,0,0,0,0,0,0,0,0,0,0
FILL    pFastSine  0,0,0,0,0,0,0,0,0,0,0,0

PDEFINE  simulate
  // Generate the continuous encoder pulse stream
  COPYVEC(vPulses, pRepPulses)
  // Analyze pulse stream to generate resample timing data
  ENCDRATE(360, pRepPulses, $0001, DIGITAL, 256, pTiming)
  // Generate mathematically ideal waveforms
  SINEWAVE( 20000, 1280, pFastSine )
  SINEWAVE( 20000, 64, pIdealSine )
  // Resample from the original waveform
  ADJRESAMP(pFastSine, 1, pTiming, ACCURATE, pNewSine)
  // Post-resampling analysis of signal differences.
  // Send the four output pipes of the FFTs to the PC host.
  MIXRFFT(256, FORWARD, pNewSine, HALF, POLAR, pNewMag, pNewAng )
  MIXRFFT(256, FORWARD, pIdealSine, HALF, POLAR, pIdMag, pIdAng )
END
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Application 1: Downsampling rates 
This application is basically the same as Application 0, except that it is the real thing, using actual 
encoder input measurement channel signals.  For making some measurements at a very high speed, you 
might still want to collect samples “on a per revolution basis” but you don't need all of the samples you 
would get at every encoder timing pulse.  In this example, the encoder has 512 pulses per revolution, 
but you only wish to record 10 measurements in each channel per rotation. Besides the timing channel, 
there are four signal channels where you want to capture measurements. All channels are sampled 
simultaneously.

Solution: Use an  ENCDRATE command  to analyze the incoming timing sequence from analog 
encoder pulses. The input levels are set so the nominal high voltage level is 5 volts and the nominal low 
voltage level is 0 volts on the encoder input channel. There is no reference timing pulse. Use an 
ADJRESAMP command to combine the timing information and the original sampled data streams to 
construct new data streams, synchronized to the rotations, but with the data rates reduced to the desired 
per-rotation rate. 

Hazards: Be careful about signal bandwidths. Downsampling in this way has a potential, in general, 
for introducing aliasing effects into your measurements. If this happens, there is no way to remove 
those effects from your data sets later. You will be safe if you are measuring signals that simply cannot 
change fast, hence potentially dangerous frequencies are not present.
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DAPL configuration:

idefine MslInput 
   channels 5
   set IP0 d0      // Encoder channel
   set IP1 d2      // Four analog channels
   set IP2 d4
   set IP3 d6
   set IP4 d8
   scan  10.000    // 100000 samp/sec, each channel
end

pipes pResampled word
pipes pTiming double

pdefine downsample
  // Analyze timing from encoder signal
  ENCDRATE(512, ip0, 0, 16000, ANALOG, 10, pTiming)
  // Resample from the original waveform
  ADJRESAMP(ip(1,2,3,4), 4, pTiming, FAST, pResampled)
  // Merge pipes to PC.
  merge(pResampled, $BinOut)
end
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Application 2: Upsampling rates 
This application is similar to Application 1, except that instead of reducing the number of sampling 
positions, it increases the number. This can be useful when rotation is slow – timing pulses from the 
encoder signal do not arrive very often, and would not provide a sufficient number of samples if used 
directly. But since the resampling is a mathematical operation that uses high-rate, time-based samples, 
it is perfectly valid to generated multiple sample values  per hardware encoder pulse.

In this example,  a 360 position encoder is used to study an engine rotating at 600 RPM. That is only 
10 rotations per second,  so the time between hardware samples is about 300 microseconds. To observe 
some variables, this is not fast enough. Resampling increases the apparent sample rate from 360 to 
3600 samples per rotation.

Solution: Use an  ENCDRATE command  to analyze the incoming timing sequence from analog 
encoder pulses. The input levels are set so the nominal high voltage level is 5 volts and the nominal low 
voltage level is 0 volts on the encoder input channel. There is no reference timing pulse. Use an 
ADJRESAMP command to combine the timing information and the original sampled data streams to 
construct new data streams, synchronized to the rotations, but with the data rates increased to the 
desired per-rotation rate. This configuration is virtually the same as the one in Application 1, except for 
the differences in the resampling rate parameters.
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Hazards: Upsampling cannot generate information that is not already present in your original signals. 
If the original high-resolution time-based sampling could not capture certain information, that 
information will continue to be missing in an upsampled data stream – in effect, the resampling 
becomes an elaborate curve interpolator that fills gaps smoothly where the signal originally was not 
smooth. If upsampling computes many sample values per encoder pulse, and if the pulse rates are very 
fast, this could overload the xDAP processor, and unprocessed data will backlog in memory.

DAPL configuration:

idefine MslInput 
   channels 5
   set IP0 d0      // Encoder channel
   set IP1 d2      // Four analog channels
   set IP2 d4
   set IP3 d6
   set IP4 d8
   scan  20.000    // 50000 samp/sec, each channel
end

pipes pResampled word
pipes pTiming double

pdefine upsample
  // Analyze timing from encoder signal
  ENCDRATE(360, ip0, 0, 16000, ANALOG, 3600, pTiming)
  // Resample from the original waveform
  ADJRESAMP(ip(1,2,3,4), 4, pTiming, FAST, pResampled)
  // Merge pipes to PC.
  merge(pResampled, $BinOut)
end
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Application 3: Speed profile  
To perform a timing analysis, the ENCDRATE command must determine which time-based high-
resolution samples correspond to which encoder pulse positions. Since the time-based samples 
correspond to equal time intervals, the information is equivalent to a correspondence between rotation 
angle and equal increments of  time. Under assumptions that the profile is sufficiently smooth, there is 
enough information to generate a profile of instantaneous velocity at each angle of rotation. From this, 
a derivative estimator can generate the corresponding profiles of instantaneous acceleration.

In this example, the effects of a switching load are studied on a large synchronous generator. The speed 
of the generator will be regulated somewhat by the interconnected power grid and the dynamics of the 
load, but strain due to switching transients or resonant oscillations can be indicated by local 
acceleration disturbances. The generator operates at a nominal 600 RPM, and is monitored with a 
1024-point optical encoder, for a nominal rate of 10240 encoder points per second. 

Solution:   To get a good time resolution, the sampling rate of the xDAP is set to 51200 samples per 
second, a factor of 5 higher than the encoder pulse rate. The encoder signal is analyzed by an 
ENCDRATE command in a normal way to derive timing information at resampling locations.  The 
resampling produces data for the same 1024 locations per rotation that correspond to hardware encoder 
pulse positions. An ACCPROFILE processing command extracts timing information to reconstruct the 
speed profiles — no data streams are resampled for this processing, but you are not excluded from 
adding additional processes to the configuration if you wish. 
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Hazards:   You cannot depend on the absolute accuracy of the profile values. The appendix section at 
the end of this manual, and the descriptions of individual commands, discuss  how instantaneous 
velocity and the pulse-by-pulse digital chatter are “aliased.” If the digital bit-chatter is allowed to leak 
through, it dominates the profile data sets, which are then little better than pure noise; but removing the 
chatter also removes some of the bandwidth necessary to track rapid speed transitions. 

An acceleration profile is obtained by differentiating the velocity profile. This is only a mathematical 
approximation, since the functions being differentiated are unknown. In effect, the speed samples are 
used to construct a smoothed approximation curve, and the slope of that curve becomes the derivative 
estimate.  The derivative estimates cannot know which variations are caused by residual noise and 
which are physically meaningful. Derivatives will amplify any noise passing through into the velocity 
profile, and the numerical estimates will behave very much like true derivatives would.  Filtering is 
required to prevent noise effects from dominating, but this filtering unavoidably impairs the ability of 
the profile estimates to track very fast but physically real effects such as impulsive acceleration spikes.

DAPL configuration:

idefine MslInput 
  channels 1
  set IP0 d0     // encoder signal
  scan 19.532    // approximately 51200 samples/second
end

pipes pTiming double
pipes pVel float
pipes pAcc float

pdefine  speedtrak
  // Analyze timing from encoder voltage signal
  ENCDRATE(1024, ip0, 0,16000,ANALOG, 1024, pTiming)
  // Construct velocity and acceleration profiles
  ACCPROFILE(PTiming, 51200.0, 1024, pVel, pAcc)
end
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 Application 4: Retaining time-based and rotation-based data 
The number of samples in data streams will depend on the sampling rates and the rotation speeds. It 
will be almost impossible to tell from the data which time-based samples correspond to which angle-
based samples. That is why most applications that need to use data at both rates will involve software 
triggering. The software triggering identifies specific positions in data streams, and these positions can 
be used to determine the correspondence.

Most applications that care about positions will also connect a “reference timing” signal, also called an 
“index” or “top dead center” (TDC) signal, to establishes an angular position reference. 

Since there is no fixed relationship between the sampling and rotation rates, sufficient data block sizes 
must be chosen so that every desired time interval is adequately spanned in both data sets. If you need 
to cover full rotations, allow plenty of time. If you need to cover a certain time interval, collect 
sufficient rotation data. 

In this application, piston pressure is monitored. Pressure can change rapidly, so we want to preserve 
high-rate samples, but we also want to record pressure as a function of rotation angle, so that the two 
data sets can be related to each other.  The resampled measurements start at a TDC reference position. 
Data capture continues long enough to cover the desired time span, allowing for speed variations. Data 
are selected once at encoder-aligned positions, using resampling, and then again in the ordinary time-
based data using software triggering.

Solution:   An ENCDRATE command observes the encoder timing and reference signals. The results of 
this analysis are used by an an ADJRESAMP command to build a resampled data set with pressure 
values corresponding to the encoder's hardware timing locations.  This example is configured for a 
rotation rate around 1000 RPM, with an encoder having 720 pulses per rotation. Sampling at a rate of 
120000 samples per second will yield approximately 10 samples per encoder timing pulse. 

Given a TDC reference signal,  an ENCDRATE command  will locate its first position aligned to a TDC 
pulse. (This has the effect of bypassing an indeterminate initial number of samples, which are not 
forgotten, but no resampling positions are located there.) Starting from this “sync” location, each group 
of 720 samples will represent one rotation. Though it is possible to locate these blocks by triggering, it 
is easier just to “count samples” and take groups of 720 samples from the resampled data stream. 

Software triggering analysis, applied to the raw, high-resolution time samples of the TDC signal, can be 
performed by a LIMIT command to detect TDC pulse edges, in parallel with other processing. There 
is one event per TDC pulse. A  WAIT command then responds to the software triggering events by 
selecting the corresponding time-based samples from the high-resolution stream of pressure 
measurements. Retaining data for ½ rotation will require a block of about 3600 samples.

The number of samples in the time-based and encoder-based blocks is different. To avoid transfer rate 
problems, these values are first collected into a pipe, and then transferred to the host using an NMERGE 
command. (See the “general example” at the end of Chapter 2 for the slightly more complicated but 
more robust approach that sends data at differing rates through separate communication channels.)
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Hazards:  Always be careful when transmitting data to a PC host at two different rates. It is easier to 
get into trouble with this than you might suppose – the default data transfer method configured by 
DAPstudio is vulnerable to this. DAPstudio does not know when you collect data at multiple rates, and 
assumes constant and equal flow rates of data in all channels. But suppose that the time-based sample 
block is 10 times as large as the encoder-based block. Under the default strategy, with samples 
delivered one-for-one from each source, only 10% of the time-based samples have been transferred at 
the time that the rotation-based block completes, leaving 90% of the time-based data backlogged in 
memory and waiting for more angle-based samples. Repeat this lots of times and the data backlog can 
grow into a major problem.

There are two solutions that you can use to avoid these rate problems. 

1. If you know the number of samples in each block, force the transfers into these sizes to keep the 
data rates consistent.

2. Move the two kinds of data blocks to the host through different communication channels, so 
that the streams are processed independently at their own separate rates.
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This example application uses the first approach.

Data sets collected by triggering cannot overlap When you use software triggering to retain some data, 
those values are removed from the original data pipe and are not available for another triggering event. 
If you need to be sure that your time-based data completely span a rotation, you will need to retain data 
that might span more than one rotation – and in that case, data blocks captured once per rotation with 
resampling will not correspond one-for-one with time-based blocks.

DAPL configuration:  

idefine MslInput 
  channels   3
  set IP0    d0
  set IP1    d2
  set IP2    d4
  scan   8.334    // 120000 samples/second 
end

pipes pPressEnc word
pipes pPressRaw word
pipes pTiming double
pipes pTransfer word
triggers tTDCevent mode = normal

pdefine twoways
  // Analyze encoder timing and reference signals
  ENCDRATE(720, ip0, ip1,  0, 16000, ANALOG, 720, pTiming)
  // Resample the pressure measurements at timing pulses
  ADJRESAMP(ip2, 1, pTiming, FAST, pPressEnc)
  // Detect TDC reference pulse in time-based data
  LIMIT(ip1,  INSIDE,14000,32767,  tTDCevent, INSIDE,12000,32767)
  // Collect about 1/2 rotation of time-based pressure data
  WAIT(ip2, tTDCevent, 0,3600, pPressRaw)
  // Deliver data at balanced rates to host system
  NMERGE( 720, pPressEnc, 3600, pPressRaw, pTransfer)

        // Transfer to PC host
  merge(pTransfer, $BinOut)
end
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Application 5: Selecting rotational data from time-events 
Time events can arise from a variety of activities.

• Manually triggered activity from a GUI control interface

• Events that are too fast to detect in resampled data streams

• Events related to external timing control

This application studies how machine performance varies with operating temperature. We don't know 
exactly when the system will be at a temperatures that we want to measure, but we do know that the 
temperature cannot change very fast, so it is sufficient to select data every few seconds.

You can't tell how much time elapses within a resampled data stream – this varies with rotation speed. 
But it is relatively easy to determine regular time intervals in time-based data sets, simply by counting 
samples. The TGEN processing command will do this for you, generating trigger events corresponding 
to regular time intervals that you specify. 

Time intervals could end with the rotations at any angle, but the retained data blocks should start at a 
“top dead center” timing reference pulse, and cover complete rotations.  This requires a two-step 
process: 

1. Convert the timing-event location to an angle-based location relative to encoder timing pulses. 

2. Determine within the encoder-based data stream the location where a rotation starts. 

Solution:   Measurements are taken using 12 sensors, recording 32 positions per rotation, and retaining 
10 rotations in a cluster.  The encoder has 256 timing pulses per rotation. You determine that 40000 
samples per second on each channel provides sufficient time resolution for the resampling. Use an 
ENCDRATE command to analyze the timing pulses and position reference pulses from the encoder. 
Apply an ADJRESAMP command, in the usual way, so that the desired 32 positions of equal rotation 
angle are located. The total number of samples to retain is

    12 sensors  x  32 positions  x  10 rotations  =  3840 samples
This process is repeated once every 10 seconds. During these 10 seconds, the number of time-based 
samples that will pass per channel is 
  40000 samples/sec * 10 seconds  = 400000 
Configure a  TGEN processing command to generate trigger events at 400000 time-sample intervals. 
Take these events (at 10 second intervals), and convert them to the corresponding rotational positions 
using a TRIGMAP command.  Use a TRIGSCALE command to realign these to the beginning of 32-
sample groups at a TDC reference pulse.  Use a software triggering WAIT command to select the 3840 
retained samples at each event.
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DAPL configuration:  

idefine MslInput 
  channels   14
  set IP0    d0   // Timing 
  set IP1    d2   // Reference
  set IP2    d4   // Six sensor channels
  set IP3    d6
  set IP4    d8
  set IP5    d10
  set IP6    d12
  set IP7    d14
  set IP8    d1   // Remaining six sensor channels
  set IP9    d3
  set IP10   d5
  set IP11   d7
  set IP12   d9
  set IP13   d11
  scan   25.0     // 40000 samples/second each channel
end

pipes pTiming double
pipes pPressEnc word
pipes pRSSensors word
pipes pTransfer word
triggers tTenSec  mode=normal
triggers tRotational   mode=normal
triggers tKeep   mode=normal

pdefine twoways
  // Analyze encoder timing and reference signals
  ENCDRATE(256, ip0, ip1,  0, 16000, ANALOG, 32, pTiming)
  // Resample the 12 sensor measurements 32 times per rotation
  ADJRESAMP(ip(3..13), 12, pTiming, FAST, pRSSensors)
  // Generate 10-second timing intervals
  TGEN(400000, tTenSec)
  // Map these interval events into rotational positions
  TRIGMAP(tTenSec, pTiming, TOEXTERNAL, tRotational ) 
  // Adjust to start of 3840-term blocks covering 12 channels
  TRIGSCALE(tRotational, 0, 3840, 32,   tKeep)
  // Retain desired 3840 sample blocks
  WAIT(pRSSensors,tKeep, 0,3840, pTransfer)

        // Transfer to PC host
  merge(pTransfer, $BinOut)
end
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Application 6: Selecting time-based data from rotation events 
Time-based data can be useful to resolve high-frequency or short-duration features that would be 
missed in resampled data sets. It can also observe elapsed time, which is not possible in data sets slaved 
to the rotation speed. 

In this application example, the goal is to select blocks of data for a frequency analysis once every 
10000 rotations. There is no TDC reference pulse, but the encoder resolution is known to be 360 pulses 
per rotation. A microphone capture vibrations for analysis. It is possible to do this application with the 
time-based data alone, triggering on each pulse so that it can be counted, counting the pulses until there 
are 3600000 of them, then triggering again to collect the desired sample blocks. This is very tricky, 
however. 

It is much simpler to do this in terms of rotations. We know that there will be 3600000 encoder pulses 
between events where blocks are analyzed, so the locations of these events are predetermined. These 
locations are then mapped to the corresponding time-based sample locations where data should be 
captured. 

Solution:   Measurements are taken using 3 regular sensors plus one more special microphone sensor. 
The encoder timing pulses are analyzed by an ENCDRATE command that retains 360 samples per 
rotation, which is a configuration selected to facilitate other analysis. A TGEN processing command 
generates artificial trigger events once every 3600000 encoder pulses. The timing information from the 
ENCDRATE command and the trigger events from TGEN are routed to a  TRIGMAP command, which 
operates in the TOINTERNAL mode to map events from an encoder pulse location to a time-based 
sample location. A fixed 2048-sample block  is captured at that location, using software triggering and 
a WAIT processing command. The blocks are then passed to an FFT for analysis, and returned to the 
host system via a separate data communication channel.

26



27

sampling

sampling
clock

other 
processing

MIXRFFT

TRIGMAP

WAIT

ENCDRATE

timing pulses

other signals
microphone 

TGEN

time-based
vibration data

selected data  

vibration spectrum  

sampling
clock



DAPL configuration:  

idefine MslInput 
  channels   5
  set IP0    d0   // Timing 
  set IP1    d2   // Three other channels
  set IP2    d4
  set IP3    d6
  set IP4    d8   // Microphone, for vibration analysis
  scan   20.0     // 50000 samples/second each channel
end

pipes pTiming    double
pipes pSelected  word
pipes pRreal     float, pImag float
pipes pSelected  word

triggers tRotations  mode=normal
triggers tSelect  mode=normal

pdefine getspectra
  // Analyze encoder timing 
  ENCDRATE(360, ip0, 0, 16000, ANALOG, 360, pTiming)
  // Omit other resampling and related processing...
  
  // Generate events every 10000 rotations (3600000 samples)
  TGEN(3600000, tRotations)
  // Map these interval events into time-based positions
  TRIGMAP(tRotations, pTiming, TOINTERNAL, tSelect ) 
  // Retain 2048 sample blocks of microphone data
  WAIT(iPipe4,tSelect, 0,2048, pSelected)

        // Transfer spectrum to PC host via separate pipe
        MIXRFFT( 2048, FORWARD, HAMMING, pSelected, FULL, PARTS, \
            pReal, pImag )

  merge(pReal, pImag, Cp2Out)
end
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4.   Command Reference
This section provides details about the special processing commands provided by the ROTM command 
module. 

• ENCDRATE
Analyze timing pulse data received from a digital encoder, to determine a sequence of positions 
for resampling relative to rotary encoder timing pulses.  This is the most common way of 
tracking the rotation angle for rotating machinery such as generators or engines. Sampling can 
take place with higher or lower resolution than that provided by the encoder. 

• ADJRESAMP
Perform the numerical calculations to obtain resampled signal values at selected positions in 
one or more channels, as determined previously by the ENCDRATE command. 

• TRIGMAP
Convert events in resampled data streams into locations in the original high-resolution time-
based sample streams. Convert events in the original high-resolution time-based sample streams 
to corresponding positions in resampled data streams. 

• ACCPROFILE
Apply a supplementary rate analysis to obtain instantaneous speed and acceleration information 
from the timing information previously generated the ENCDRATE processing command. The 
values are with respect to time, but associated point-by-point with the resample locations 
determined relative to the encoder. 

Commands are listed in alphabetical order, by name, in the pages that follow.
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Processing Command
Module ROTM :: ACCPROFILE

Computes rotational velocity and acceleration profiles from encoder timing data. 

Syntax

ACCPROFILE( RATEDATA, SAMPRATE, RESOLUTION, VELPIPE, ACCPIPE ) 

Parameters

RATEDATA 
Timing information generated by a previous ENCDRATE command  
DOUBLE PIPE 

SAMPRATE 
Samples per second used to observe raw encoder signals 
FLOAT CONSTANT 

RESOLUTION 
Encoded stream resolution in positions per rotation  
WORD CONSTANT 

VELPIPE 
Velocity data output stream  
FLOAT PIPE  

ACCPIPE 
Acceleration data output stream 
FLOAT PIPE  

Description

The ACCPROFILE command analyzes a timing data stream, produced by an ENCDRATE processing 
command and delivered via the RATEDATA pipe. Rate information is extracted without actually 
performing any resampling — so no sampled signals are used directly. So that the ACCPROFILE 
command can interpret the rate data in terms of RPM units, you must provide the SAMPRATE 
parameter, which specifies the sampling rate (in samples per second) used to monitor the encoder 
signal, and the RESOLUTION parameter, which specifies the number of sample positions per rotation 
that the ENCDRATE command produces. The results of the analysis are two streams of data, each with 
one output term per resampling position indicated by the input timing data. The first output stream is 
the instantaneous speed in RPM units, placed into the VELPIPE output stream. The second output 
stream is the instantaneous acceleration in units of RPM change per second, placed into the ACCPIPE 
output stream. Provided that you used a "top dead center" reference pulse signal with your ENCDRATE 
processing, the output streams begin at a location that corresponds to the arrival of a reference pulse. 

Both the velocity and the acceleration profiles are derived numerically. Raw encoder data arrive in the 
form of integer counts of samples, yet speed of rotation is not limited to integer values. For example, if 
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the number of samples for a sequence of observed encoder pulses is 7, 7, 8, 7, 7, 8, ... 
this is unlikely to mean that there are quantum jumps in speed. Smoothing the velocity profile is critical 
to estimating an acceleration profile — discrete jumps in velocity look like extreme impulses of 
acceleration, yielding very high noise levels in the trajectory estimates. The ACCPROFILE command 
makes a tradeoff between bandwidth (how closely it can track speed change) and how much noise will 
get through. 

Some hazards to keep in mind: 

• The rate at which data are produced will depend on the rotation speed, just as it would if your 
sampling was controlled directly by the encoder hardware.

• At very high speeds, there are lots of encoder pulses, but few samples per pulse, so the time 
resolution with respect to angular position is relatively poor. 

• At very low speeds there are lots of samples per encoder tick for good angular resolution, but 
lots of things can be missed during the time intervals between encoder ticks. Aliasing can cause 
spurious effects that look like noise or velocity variations.

• The filtering necessary to produce reasonable acceleration profiles has the side effect of 
producing subtle alterations of the data stream, so if you attempt to integrate the acceleration 
data numerically you will not regenerate the velocity profile exactly.

Examples

ACCPROFILE(PProfile, 120000.0, 1000, pVel, pAcc)

A separate encoder timing analysis, performed by an ENCDRATE command, is received through pipe 
PProfile. The encoder signal was observed by sampling it 120000 times per second. The result of 
the ENCDRATE analysis is a data stream defining 1000 locations per rotation. The timing information is 
analyzed, and 1000 velocity profile values per rotation (in units of RPM) and 1000 acceleration profile 
values per rotation (in units of RPM change per second) are delivered to the pVel and pAcc pipes, 
respectively. 

See Also
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Processing Command
Module ROTM :: ADJRESAMP

Adjustable-rate resampling of a data stream. 

Syntax

ADJRESAMP( PINMUX, NCHAN, RSRATE, [METHOD,] POUTMUX )

Parameters

PINMUX 
Input data stream with multiplexed sampled signals 
WORD PIPE 

NCHAN 
Number of multiplexed channels in the PINMUX stream 
WORD CONSTANT 

RSRATE 
Resampling position information from other processing 
DOUBLE VARIABLE | DOUBLE PIPE 

METHOD 
Optional interpolation method keyword parameter 
NEAREST | FAST | ACCURATE  

POUTMUX 
Output data with multiplexed resampled signals 
WORD PIPE 

Description

An ADJRESAMP task performs an adjustable interpolation analysis, so that equally spaced samples 
captured at a sampling rate determined by a Data Acquisition Processor sampling clock are transformed 
into samples at a dynamically adjustable rate. The ADJRESAMP command uses an adjustable rate 
established by a separate ENCDRATE task. This allows the effective resampling rate to lock to speed 
variations of the external encoder timing signal. 

The ADJRESAMP command receives multiplexed input data from the PINMUX pipe. The number of 
multiplexed channels, common to the input and output streams, is specified by the NCHAN parameter. 
Each group of NCHAN channels represents the data captured in one pass through the sampling channel 
list, with one value from each input channel. In all channels, the samples are assumed to occur at equal 
intervals of time. No assumptions are made about relative time or phase relationships between 
channels. Each channel is processed independently. The new sample values are placed into the 
POUTMUX pipe, in the same multiplexed sequences as received. 

The timing source specified by the RSRATE parameter. For purposes of rotating machinery where 
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maintaining alignment to a reference signal is critical, only the DOUBLE PIPE form of the RSRATE 
parameter should be used. (This command can accept a simple rate parameter via a shared variable, but 
this is not sufficient to maintain position alignment, and never recommended for rotating machine 
analysis.)  The encodings received from the RSRATE output pipe includes rate, duration, and curvature 
information. This is enough information to lock to the phase of a continuously changing rate, somewhat 
in the manner of a phase-locked loop. No resampling is done until the associated resampling data arrive 
in the RSRATE pipe.  

The positions of the input and output data streams are aligned so that the first sample in the output 
stream aligns in time exactly with the sample captured at the rising edge of an encoder timing signal. If 
the resampling analysis was previously done taking a TDC timing reference pulse into account, that 
first location also aligns to the TDC timing pulse.  After that, because the input and output streams are 
at different sample rates, the samples in the input and output data streams do not line up one-for-one 
over time. Beware, this difference can lead to data backlog problems when attempting mixed data 
transfers, for example, sending both raw and resampled data through the same MERGE processing 
command supplied by a DAPstudio software configuration. 

The optional METHOD parameter is one of the following keywords, in all capital letters but without any 
quote characters.

• FAST     This option is appropriate for most applications, particularly those having some 
observable random noise, processing data at high rates, applying additional processing such as 
anti-alias filtering, or performing spectrum analysis. In theory it is slightly less accurate, making 
measurements appear slightly more "noisy". In practice, you will find it difficult to see any 
difference in your results.

• ACCURATE    This is the option that you should use if you have very precise, very clean 
signals, and you want the best possible reconstruction of every sample, or the best possible 
representation of very high frequencies. This requires roughly twice the computation of the 
FAST method, using a two-stage interpolation. If you have a surplus of CPU capacity, there is no 
harm from using this method even if you don't otherwise need it.

• NEAREST      This can be a useful option when the data are originally sampled at a much higher 
rate than the rate at which samples are retained — for example, when a machine is rotating very 
slowly there could be hundreds of samples observed for each optical encoder position. For such 
cases, there should be no harm from simply ignoring fractions of sample positions.  The 
resampled value is taken as the value of the nearest neighbor position, as produced directly by 
sampling hardware, without additional computations. 

If you omit the METHOD parameter, you will get the FAST option by default.

For the resampling methods that use interpolation, the interpolation formula is balanced, using an equal 
time-horizon of older and newer samples surrounding each evaluation position. This introduces some 
potential problems at the start and end of a data run, where not enough older or newer samples are 
available to perform interpolation calculations. At task start-up, artificial "padding" values force the 
correct alignment of the data streams, but as a result, the first few values you receive in the POUTMUX 
stream are not meaningful data. To avoid a "glitch" in your analysis, be careful to bypass any artificial 
initial samples (if present) before applying your data analysis. In a similar manner, to avoid missing 
relevant samples at the end of a run,  sample some extra raw data at the end. 
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Some additional restrictions:

1. For best results, the frequencies present in every channel should be band-limited to below 40% 
of the Nyquist frequency (at least 5 samples captured per cycle). If your data sets have high-
frequency noise or step edges, some noise artifacts will remain in the resampled data. The 
resampling is somewhat analogous to fitting a smooth curve to the data, and then evaluating 
along the curve. If the input data set is not smooth, the meaning of the curve fitting operation is 
unclear. This is not disastrous, with results similar to noise removal by lowpass filtering. One 
way to get a suitably oversampled data stream is to double your sampling rate, then decimate 
back to the sample rate you want later in your resampling. 

2. Be careful about using ADJRESAMP command to lower the effective sample rate. Exactly like 
any other sampling based on an encoder, the ADJRESAMP command has no defense against 
aliasing. For rate shifts that are only a few percent, the aliasing can only affect the few highest 
frequencies, which should be empty  anyway – if high frequencies are not present, there is 
nothing to alias and no damage done. If it is critical to avoid all aliasing, use electronic or digital 
filtering on your signal to establish appropriate band-limiting before resampling. 

3. If subjected to abrupt steps (which would violate the bandwidth condition above), the 
interpolation process exhibits a transient behavior similar to a frequency-selective digital filter 
in a neighborhood of the discontinuity. Because the interpolation is balanced forwards and 
backwards in time, and applied to data in a buffer, the transient can appear to have a counter-
intuitive "before the disturbance arrived" behavior. 

4. There is limited local resolution for locating resampling points. For the FAST interpolation 
method, the timing uncertainly results in an apparent timing jitter of up to ±1/1000 sample 
interval at the initial high-resolution. Some effects can be observed on very high-level signals 
near the useful range limit at 40% of the Nyquist rate, appearing as seemingly random 
"noise"errors approximately -60dB below the signal level. These errors decrease at lower signal 
amplitudes and lower frequencies, and are typically masked by ordinary signal noise. For the 
ACCURATE interpolation method, the results of timing uncertainty are indistinguishable from 
integer rounding effects, approximately -100dB below the signal level. 

5. Timing alignment depends on continuous sampling starting from sample 0. Burst mode 
processing will carry over stale samples from previous operation in data buffers, resulting in 
some invalid initial values each time the processing resumes. The time shift at the initial sample 
of each new burst is indeterminate. It is better to use software triggering, which will watch 
continuous streams of input data  between detected events. 
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Examples

PIPE    rate_control  DOUBLE;

ADJRESAMP(IPipe(2,4,6,8), 4, rate_control, ACCURATE, pinterp)

The application needs highly precise data, aligned in rate and phase over a very long term to an encoder 
signal. The timing analysis is performed by a prior ENCDRATE task. The resulting timing information 
is received through the rate_control pipe. The four input channels from input pipe 
Ipipe(2,4,6,8) are resampled independently at the predetermined positions using the ACCURATE 
interpolation strategy. This expends extra computation to obtain the best possible time-resolution for 
locating each resampled point – the FAST method is preferable with less extreme requirements. The 
resampled data for the four channels are placed in the pinterp output pipe. 

See Also
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Processing Command
Module ROTM :: ENCDRATE

Compute resampling positions equally spaced in rotation angle using an encoder. 

Syntax

ENCDRATE( [NENCODE,] ANALOGIN, [TDCIN,] LOW, HIGH, 
    SOURCE, NRESAMP, OUTPIPE )

ENCDRATE( [NENCODE,] DIGITALIN, TMMASK, [REFMASK,] 
    SOURCE, NRESAMP, OUTPIPE )

Parameters

NENCODE 
Predetermined number of encoder pulse cycles per rotation 
WORD CONSTANT | LONG CONSTANT 

ANALOGIN 
Analog input timing signal 
WORD PIPE 

TDCIN 
Optional analog input reference signal 
WORD PIPE 

LOW 
Nominal digitized level for typical "inactive low" analog input 
WORD CONSTANT 

HIGH 
Nominal digitized level for typical "active high" analog input 
WORD CONSTANT 

DIGITALIN 
Digital input port value with timing and reference lines 
WORD PIPE 

TMMASK 
Bit mask to isolate timing pulses from digital input 
WORD CONSTANT 

REFMASK 
Bit mask to isolate reference position pulses from digital input 
WORD CONSTANT 
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SOURCE 
Keyword, no quotes, indicating type of input signals 
ANALOG | DIGITAL 

NRESAMP 
The number of resampling positions to record per rotation 
DOUBLE CONSTANT | LONG CONSTANT 

OUTPIPE 
Pipe for transferring encoded rate information to resampling tasks 
DOUBLE PIPE 

Description

An ENCDRATE task observes pulses from an encoder mounted on a rotating machine, to determine the 
locations for resampling data. The pulses from the encoder are observed by sampling at short fixed 
time intervals, noting how many samples occur within each of the encoder timing pulse intervals. The 
inertia of the rotating machinery will not allow the speed to vary more than a few percent through the 
course of a single rotation, so the sequence of pulses can be interpreted as resulting from a smoothly-
varying speed trajectory. The smoothed trajectory is then used to determine positions within the 
sampled data stream corresponding to equal steps in angular position. A separate analysis can use this 
information to extract resampled data values from the data originally captured on the high-resolution, 
fixed-interval sampling clock.

Ordinarily, when measuring rotating equipment, a choice must be made between one of two sampling 
strategies:

1. Use a stable oscillator as a time-reference to clock the samples. This gives good control of time 
resolution, but as the speed of rotation changes, the relationship between samples in the data set 
and angular positions becomes unclear.

2. Use an optical encoder mounted on the shaft to produce digital pulses at equal increments of  
angular position. The relationship between samples and angular positions is then known 
precisely, but the time interval spanned by the analysis becomes unclear, dependent on the 
unknown speed. 

The ENCDRATE command provides a bridge between these two strategies. Measurements are captured 
on a high-resolution time-reference clock, so that the time location of each measurement is known. 
Then the ENCDRATE command observes the passage of encoder pulses, relating these to locations 
within the captured measurement data streams. 

The NENCODE parameter is optional, and specifies how many timing pulses the digital encoder will 
generate during one shaft rotation. Timing pulses begin inactive low, and a pulse is deemed to arrive 
when a low-to-high transition is detected. If specified, the NENCODE value is assumed to characterize 
the angular resolution of the encoder, the number of timing pulses per one revolution. If the resolution 
is not specified, but a reference input signal is provided, the resolution property is determined 
automatically by counting the timing pulses through one revolution. If there is no specification and also 
no reference input signal, the resolution property is indeterminate and an arbitrary default of 360 (one 
timing pulse per degree rotation) is assumed. 
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The ENCDRATE command accepts one or two input signals from the encoder. If received as analog, 
they arrive through two separate channels; if received as digital, they arrive through two separate bit 
lines within one port-group of 16 bits. The timing signal provides high-resolution pulses at equal angles 
of rotation. The reference signal (sometimes called a top dead center signal) provides one pulse per 
rotation, aligned with one of the timing signal pulses. 

Digital or analog signals can be used as inputs to the ENCDRATE command. The type of signals is 
specified by the SIGNALS keyword. This keyword must be specified in all capital letters, without 
quotation marks. You can't use a mix of timing signal types. The keyword must be one of the two 
following choices: 

1. ANALOG     If the signals are routed through analog channels, specify this keyword. The analog 
inputs are specified by parameters ANALOGIN and TDCIN. Since each analog channel uses all 
16 bits, there must be two input channels when you use the reference signal. If you are not using 
a reference signal, omit the TDCIN parameter.

2. DIGITAL  If the signals are routed through digital lines, specify this keyword. Both digital 
signal lines must be routed through the same digital port address, so the two values can be 
captured simultaneously and delivered through one DIGITALIN source pipe. Specify the 
TMMASK parameter to indicate which bit is the timing bit, and the REFMASK parameter to 
indicate which bit is the reference bit. The binary representation of the integer masks must be 
such that there is a "1-bit" at one bit position corresponding to the signal, and all of the other bit 
positions are "0-bits". For example, $0002 would select bit position 1, the next-to-low-order 
bit. If you are not using a reference signal, omit the REFMASK parameter. 

Rotary encoders typically provide a reference output for "top dead center" (TDC) pulses. When the 
secondary encoder input TDCIN is specified, timing pulses are observed but skipped prior to the first 
TDC pulse received through the TDCIN channel, and the first resampling position will align with the 
TDC pulse. Suppose for example that the NENCODE parameter is 1024, and that 44 previous encoder 
pulses spanned by 248 samples were passed before the TDC pulse arrived. Then the 44 encoder pulses 
are disregarded. As far as the encoder processing is concerned, the first resampling position is at the 
rising edge of the 45th encoder pulse at the 249th sample; this will be “sample position 0” in resampled 
data sets.  The TDC input is not used again, since the ratio of timing pulses per TDC reference pulse is 
known. 

The NRESAMP parameter specifies how many sample positions you want to a later resampling analysis 
to retain per rotation. Usually, NRESAMP is integer-valued, but it is not restricted to integer values.  

• Setting NRESAMP equal to the NENCODE parameter, the resampling results are essentially the 
same as if the data were obtained by directly clocking the sampling from encoder pulses, but 
without the specialized clocking connections. 

• Setting NRESAMP to a value that is lower than NENCODE allows you to reduce the amount of 
resampled data produced, useful when rotation rates are very high.

• Setting NRESAMP to a value higher than NENCODE will give you more resampling positions per 
rotation than the encoder hardware is able to provide. The expanded data sets can provide you 
improved time resolution for analyzing a machine rotating at slow rates. 
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The analysis of the encoder signals results in a representation of locations along a piecewise smooth 
trajectory, with the results placed into the pipe OUTPIPE. A separate ADJRESAMP processing 
command can take the encoded information produced by the ENCDRATE command, and apply it to 
various maeasurement streams to determine sample values from those measured signals at the 
prescribed  resampling positions. 

When the command first starts, it does not know which encoder pulses are which. It can take up to one 
rotation to first locate a reference pulse, and to auto-detect the encoder's pulse-per-rotation resolution 
requires an additional rotation.  An indeterminate number of samples might be bypassed to reach the 
aligned condition – and this can make it awkward to determine the point of initial alignment between 
time-based and encoder-based streams based on stream values alone. 

Examples

CONSTANT  vLow   WORD  =  -16384
CONSTANT  vHigh  WORD  =   16384
PIPE      encoder_data       WORD
PIPE      tdc_data           WORD
PIPE      resamp_data        DOUBLE
CONSTANT  enc_resolution     LONG = 512
CONSTANT  resamp_positions   DOUBLE = 100.00

ENCDRATE( enc_resolution, encoder_data, tdc_data, vLow, vHigh, \
   ANALOG, resamp_positions, resamp_data )

An encoder produces analog signals ranging from -5 volts (logic low) to +5 volts (logic high). The two 
signals are delivered via analog inputs. The xDAP is configured for input ranges -10V to +10V range, 
so the nominal digitized signal voltages specified by vLow and vHigh cover half the range of the 
analog input channels. The signal with the high-rate timing pulses is delivered via the pipe 
encoder_data and the signal with the lower-rate "top dead center" reference pulses is provided via 
the pipe tdc_data. The enc_resolution parameter for the encoder hardware is 512 locations per 
rotation, which is too much data when rotating at a high speed, so the resamp_positions 
parameter is set to reduce the number of captured points per rotation to 100. The encoded rate 
information produced by the analysis goes to the resamp_data pipe, and this can be delivered to an 
ADJRESAMP task for resampling calculations.  

See Also

ADJRESAMP, for resampling that uses ENCDRATE results
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Processing Command
Module ROTM :: TRIGMAP

Converts triggering locations between time-based and encoder-based streams.  

Syntax

TRIGMAP( INTRIG, RATEDAT, MODE, OUTTRIG ) 

Parameters

INTRIG 
Trigger pipe to read original untranslated event locations  
TRIGGER 

RATEDAT  
Stream of sample timing data from independent timing analysis 
DOUBLE PIPE 

MODE 
Keyword indicating the domain for translated events  
TOINTERNAL | TOEXTERNAL 

OUTTRIG 
Trigger to receive the translated event locations 
TRIGGER 

Description

A TRIGMAP task receives information about events from the INTRIG trigger pipe, uses information 
associating internal sample locations to external timing signal locations from the RATEDAT pipe , and 
generates the corresponding translated event location in the OUTTRIG trigger pipe. 

The direction of the translation is indicated by the MODE keyword parameter. It must be specified as 
one of two keyword values, not enclosed in quote characters.

• TOINTERNAL  In this mode, the mapping converts events detected relative to an independent 
external timing reference such as a rotary encoder, converting these locations to the 
corresponding locations relative to the internal sampling clock. For example, events 
corresponding to certain angles of rotary position, as determined by an encoder, can be mapped 
to a corresponding block of high-resolution time-samples. 

• TOEXTERNAL  In this mode, the mapping converts events detected in a high-resolution 
internal data stream, based on a fixed internal sampling clock, into corresponding positions in a 
data stream aligned to an external timing reference, such as a time-base standard or rotary 
encoder. For example, when using a rotary encoder,  mapping an event detected in high-
resolution samples determines the angle of rotation where this event occurred.
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Sample locations in the original high-resolution data stream and timing events in the externally-driven 
timing stream do not always align perfectly. While sample values can be interpolated along continuous 
trajectories, events are discrete and cannot be interpolated. Consequently, if there is any time 
displacement between internal and external locations for an event, the translation will report the next  
subsequent sample location relative to the new stream. Or another way of saying this: a translated event 
always corresponds to a specific sample that is at the same time or immediately following the event in 
the originating stream, never earlier. 

Coordinating event locations in a data stream based on a regular sampling clock and also on an 
adjustable-speed encoder signal can lead to some complications that do not exist for ordinary 
triggering, and you might need to be aware of these when analyzing your data.

• Events observed in one stream might not exist in the other stream. Data events could occur 
during periods of stall, or map onto a location where another event was previously mapped.

• Very small alignment differences during the timing analysis can result in an event that is not 
reported until the next discrete sample location.   

Examples

TRIGGER   internTrig
TRIGGER   irigTrig
PIPE      pEncRate
...

TRIGMAP(internTrig, pEncRate, TOEXTERNAL, encTrig)

Timing events are observed in high-rate samples received via the internTrig trigger. The 
TRIGMAP task uses the mapping information from the pEncRate pipe to establish the association 
between position of samples in the high-rate clocked streams and externally-aligned streams. The 
TOEXTERNAL option specifies that the internTrig input events are based on the high-rate internal 
sampling clock, and the encTrig trigger receives output events that are aligned to timing pulses from 
the external timing signal. The timing information received from the pEncRate pipe is generated by a 
separate task (such as ENCDRATE). 

See Also

ENCDRATE, for processing that establishes timing information relative to a rotation encoder 
TRIGSCALE (DAPL system), for subsequent modification of trigger events 
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Appendix I.   Resampling Technology

What is resampling?
Resampling is the application of well-established DSP techniques to convert a stream of samples, 
captured under control of one timing clock, into another stream of samples referred to a different 
timing signal. You can think of resampling as accurately reconstructing the continuous signal from the 
available samples, and then selecting a new set of sample positions along this reconstructed signal. 
Resampling is closely related to the mathematical problem of numerical interpolation. 
Resampling is widely used in digital music recording, synthesis, and playback. It has been much less 
commonly used for test and measurement applications, but it is no less valid for these. 

When is resampling applicable?
Resampling is appropriate when there is a secondary timing reference, and you want samples aligned to 
that time reference, rather than the original sampling clock where measurements were captured. 

How are resampled values computed? 

The resampling calculations are very similar to the calculations that would be done to interpolate 
between two known points along a straight line segment. For the case of interpolating along a 
continuously varying signal, many known points (time-sample pairs) are used instead of just two. And 
the interpolation curve is a higher-order curve, not a straight line. 

It is not immediately obvious how to reconstruct a signal with continuously varying curvature at any 
arbitrary location from discrete samples. However, the Whittaker-Shannon Interpolation Theorem gives 
an explicit formula for doing exactly this. Any continuous signal (subject to bandwidth restrictions) can 
be reconstructed perfectly from its samples.

The practical difficulty in applying the Whittaker-Shannon Interpolation Theorem is that a perfect 
reconstruction requires an infinite number of operations using arithmetic with infinite precision. 
Fortunately, perfect reconstruction is not necessary. There is no such thing as perfect measurements, 
and attempting an absolutely perfect reconstruction would only reproduce measurement noise in 
complete detail. Approximations to the Whittaker-Shannon formulas with a finite number of terms and 
finite numerical precision yield excellent results, with the numerical errors masked by the roundoff, 
nonlinearity, and noise effects that you will experience in real measurement data. 

What is a "resampling filter"?
The theoretical Whittaker-Shannon Interpolation Theorem formula has the form of a Finite Impulse 
Response (FIR, transversal) digital filter — except for the infinite number of terms involved. A 
practical filter is obtained by reducing that filter to a finite length by windowing, a standard DSP 
technique. After this, the calculation process is the same as those for an ordinary FIR filtering 
operation. A slight complication is that a different filter must be constructed for every point to be 
evaluated.
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What is the impact on signal amplitudes?
Just as ordinary frequency-selective filters have frequency-dependent gain properties, interpolation 
filters have these too, but the intent is to make these side-effects as small as possible.

Low frequencies should see no detectable gain error effects. 

The interpolation filters in the Resampling Analysis Modules deliberately sacrifice accuracy at 
frequencies higher than 40% of the Nyquist frequency of the time-based sampling rate, in favor of best 
performance at 40% of the Nyquist frequency or below. This restriction does not necessarily 
compromise an application — the sample rate of the high-density clocked data stream is oversampled 
significantly compared to the time-rate of the encoder edges. This means that the practical bandwidth 
limitations of the resampling occur at high frequencies beyond those that should be present in the 
signals you are measuring. 

Amplitudes of signals in the low frequency band are preserved within 0.0002 dB — that is, the 
attenuation effects on a signal of maximum amplitude are less than the bit chatter that you will get 
anyway from digitizing to 16 bits precision. Frequencies higher than the 40% of Nyquist frequency can 
still carry useful information, but you must keep in mind that the higher the frequency the greater the 
attenuation effects, so you cannot depend on the magnitudes to be accurate.

What is the impact on signal phase?
An interpolation filter has absolutely no phase distortion effects. However, practical implementation 
restrictions will sometimes select resampling locations that only an approximation to the ideal 
locations, causing small erratic effects on phase that look like a lot like time jitter. 
Low frequency waveforms can't change very much from one sample to the next, so time displacements 
that are a tiny fraction of one sample at the original high-resolution have no observable effect. For a 
wave that is very high frequency and therefore changing very fast, time-quantization effects produce 
localized small time shifts can result in signal variations appearing very similar to random noise. 
Unlike true random noise, the magnitude of these effects decrease both as frequency and as amplitude 
decrease, so for typical real signals, the chatter is masked by natural background noise and is difficult 
to detect.
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What are the “interpolation modes” and what is their effect?
Because time-jitter effects can sometimes be large enough to be observable, the Rotating Machinery  
Analysis module provides three operating modes for selecting a resampling location, given a 
mathematical determination of the desired location. 

• Nearest neighbor mode.   There are no numerical compuations. If the position of the resampled 
value is different from the position of an available time-based sample, the closest time-based 
sample position is selected, and its numerical value used unmodified. This is called the Nearest  
Method in the Rotating Machinery Analysis software. This approach is very efficient,  but it can 
produce an observable “phase jitter” in high-frequency signals. 

• Pre-calculated mode.   The resampling location is rounded to one of a finite set of locations at 
which pre-computed interpolation filters are available. The phase shift is approximately 1/1000 
of the phase shift that would result from one sample displacement at the high internal sampling 
rate. To put this in perspective, if a signal has maximum possible amplitude of 32767 counts, at 
the maximum 40% of the Nyquist limit, the difference in a sample value due to the phase jitter 
could be as much as 16 converter counts — approximately -42 dB relative to the signal level. At 
lower amplitudes, and at lower frequencies, the effects are proportionally smaller. This approach 
is called the Fast Method in the Rotating Machinery Analysis software. For signals with normal 
levels, bandwidth, and background noise, or that are subjected to a frequency spectrum analysis, 
this is the method of choice.

• Phase-interpolated mode.   The resampling is calculated at two bounding locations for which pre-
computed interpolation filters are available, and then the final sample value is obtained by 
linearly interpolating between these two bounding filters. Using this method, timing jitter 
becomes undetectable. However, this computation requires twice the CPU resources of the pre-
calculated mode. This approach is called the Accurate Method in the Rotating Machinery  
Analysis software. For extremely clean signals and absolute minimal measurement error, this is 
the method of choice. In practice, it rarely adds any meaningful improvement to measurement 
quality. 
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Appendix II.   Hazards and Limitations

Resampling is a numerical approximation, with known limitations. In practice, however, these details 
are buried in the last-digit roundoff of your 16-bit integer sample values.  With properly bandlimited 
input signals, you are unlikely to have a world-class statistical expert who could determine whether or 
not your signals were obtained by resampling or captured directly under hardware control.

It turns out that there are other considerations that are much more mundane but much more significant 
to the quality of your results than the mysterious interpolation calculations.

Tradeoff:  tracking accuracy vs. digital chatter
In contrast to numerical problem of interpolation calculations, it turns out that determining where and 
when to apply the calculations is much more difficult. Suppose that the following sample counts are 
observed during a sequence of encoder pulses. 

   10   10   10   10   11   10   10   10   10   11   10   10 …

One possible interpretation of this is that the machine was rotating at (for example) 4000 RPM for the 
duration of 4 encoder pulses, suddenly dropped to 3600 RPM for the duration of 1 encoder pulse, and 
then one pulse later returned to the 4000 RPM rate, repeating this pattern. While this is perfectly 
consistent with the data, it is extremely unlikely that a massive machine is going to make such large 
changes in velocity over the course of a few microseconds. What is more likely is that the machine is 
maintaining a steady rate and the integer number of samples observed for the duration of any one 
encoder pulse varies according to how the clocked samples and the encoder pulses happen to align. By 
smoothing the discrete sequence, we can get a reasonable estimate of the steady rate of rotation. 

Yet, what happens in a realistic situation where the rate of rotation is not really steady, but varying 
continuously? In that case, an unexpected increase or decrease in the number of samples-per-pulse 
could be an important indicator of a speed change. These two goals of ignoring the digital chatter from 
sample counting, but also responding decisively to real speed changes, are at cross-purposes. There is a 
compromise, and ultimately, the curve reconstruction is not perfect. Vibrations with cycles spanning 12 
or  fewer encoder pulses per vibration cycle cannot be tracked at all. There are small local deviations 
from the theoretical ideal where the smoothing is locally too aggressive or not aggressive enough to 
separate the true speed trajectory from the chatter. Typically, the chatter-induced deviations will appear 
random and less than 1 encoder position in magnitude — but they can be larger if noise levels are high 
and speed variations are large and sudden. Results are best when changes in the machine operating state 
are relatively slow and steady. This will be true in almost all practical situations, due to the large inertia 
of the machine.
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Data rate inconsistency
There are potential problems when you try to relate a data stream captured at the original sample time 
intervals to another resampled stream using a different time reference. For example, suppose you 
resample a stream that originally had 1001 samples per second. After resampling, it has 1000 samples 
per second. If you transfer "1000 samples of this stream, 1000 samples of that stream" to your host 
system using a DAPL system BMERGE command, every time you transfer one pair of blocks this way, 
one sample of data from the original sample stream remains backed-up in buffer memory. Do this for a 
million blocks, and you get a million samples backlog. Eventually, something has to break. 

If you transfer data from the two streams through separate communications pipes — and remember to 
receive different numbers of samples from the two channels — there is no problem. 

Event locations
The DAPL system locates data according to their positions in the data stream. Events detected in a 
stream that is resampled will have positions that are not clearly related a position in the original input 
sample stream, since resampling locations vary with the rotation speed. Or the reverse: an event 
detected in the original sampled data stream will not be clearly related to any specific position in a 
resampled data stream. To detect events in one kind of data stream, and retain the corresponding data 
from another kind of stream at a different data rate, you must use the TRIGMAP command to 
appropriately realign the event locations. 

Events observed in one stream might not exist in the other stream. While samples based on an internal 
time clock are guaranteed to move forward in a consistent manner, samples based on an external 
encoder device can slow, or in the extreme case, go all the way to zero. Data events cannot be mapped 
during time intervals in which the external timing source stalls, and can sometimes be lost immediately 
before and immediately after stalls. 

At most one event can be posted for a data stream at any given location; if there are more events than 
locations, not every event detected in an input stream will result in an event in the output stream. An 
event occurring before synchronizing to an external timing stream cannot be mapped. Data collected 
under more normal conditions, without stalling or rapid bursts of events, should not show anomalous 
behaviors. 

Aliasing
As is the case with any sampling, when resampling reduces the data rate, there is a possibility that high-
frequencies representable in the original data set become aliased onto lower frequencies. The only way 
to avoid this is to keep the potentially troublesome frequencies out of the original signal at the time that 
sampling or resampling is applied. 

Half-sample shift
There is a fundamental and unavoidable time shift of ½ sample relative to the high-rate sampling 
oscillator. This applies to any detection of any position in any sampled data stream, and resampling has 
no immunity from this. 

Suppose that something produces a detectable change in a data signal (such as a timing pulse edge). 
When can you detect this change? Well, certainly no sooner than the event actually occurred. But after 
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that, you can't detect it until the change appears in the next sample. In the best case, when the change 
occurs just before sampling, the delay is approximately zero.  In the worst case, the change occurs just  
barely too late, delay for detection is nearly 1 full sample. The worst and best cases average out to a ½ 
sample shift in the entire data stream, with variations distributed around that. If multiple channels are 
resampled according to this timing, all of these channels will show this same ½ sample delay, and will 
show no time delay with respect to each other. 

Bandwidth limitations
It is not possible to preserve the full theoretical bandwidth through to the Nyquist limit and to preserve 
full accurcy at every frequency – not without filters of impractical length. There must be a compromise 
somewhere. The Rotational Analysis functions make a deliberate choice to preserve frequencies up to 
40% of the Nyquist limit. 

It is advisable to apply simple electronic filtering to cut off very high frequencies above the band you 
must preserve accurately. If the cutoff of this filter is below 40% of the Nyquist frequency of high-rate 
sampling, conditions are ideal for applying a resampling analysis. If you are going to further decimate 
your data streams, your smoothing filters can be more aggressive, and your results will improve.

If some high-frequency noise gets through, the imperfect reconstruction of these higher frequencies is 
not necessarily bad. The effects are much the same as applying a weak lowpass filter to the data first, 
and then resampling. If no  high frequencies were supposed to be present anyway, the reconstruction 
has helped to suppress noise and can be viewed as an improvement.

Startup dead time
The Rotating Machinery analysis cannot detect a rising pulse edge until it first sees a signal at a low 
logic level and then sees the signal at a high level, indicating edge arrival. Consequently, the first few 
samples can never be used by the analysis. They correspond to a fragment of a complete timing pulse, 
and unknown fragments cannot be used for anything. 

When a timing reference “top dead center” pulse is available, any pulses or pulse fragments prior to the 
rising edge of that timing pulse will be ignored. The first timing pulse at or subsequent to the reference 
timing pulse will be “initial sample zero” in the resampled data set. The resampled stream will be as if 
no encoder activity existed prior to the rising edge of the reference pulse. The corresponding samples in 
the clocked sample stream will still be accounted for, but not used for anything. 

These start-up delays can make a direct comparison between the original sample stream and the 
resampled stream tricky. However confusing, the difference is just a delay to pick the appropriate 
starting point.

Transient Behaviors
Like other filters, resampling filters have a transient response characteristic. Ordinarily, it is difficult to 
know this. However, you can see the transient response if  you violate the "40% of Nyquist frequency" 
guideline and include an abrupt "step transient" in your signal. The response of a resampling filter is 
very much like the response of any FIR filter: there is a small, artificial, "transient" wobble in the 
output data stream. This is not necessarily harmful as long as you recognized that it is an artifact of the 
filtering, and not something real.
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The step transient can seem unusual. The interpolation filter is two-sided, applied to samples both 
ahead of and behind the desired evaluation point, using data held in buffer storage. Consequently, the 
"transient wobble" can look like it is propagating both forward and backward in time, a curious 
illusion.

------------ End of Document ----------
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